Study on compressive strength and durability of alkali-activated coal gangue-slag concrete and its mechanism

被引:99
|
作者
Ma, Hongqiang [1 ,2 ]
Zhu, Hongguang [1 ]
Wu, Chao [3 ]
Chen, Hongyu [1 ]
Sun, Jianwei [4 ]
Liu, Jinyan [1 ]
机构
[1] China Univ Min & Technol Beijing, Sch Mech & Civil Engn, Beijing 100083, Peoples R China
[2] Univ Canterbury, Dept Civil & Nat Resources Engn, Christchurch 8041, New Zealand
[3] Beihang Univ, Sch Transportat Sci & Engn, 37 Xueyuan Rd, Beijing 100191, Peoples R China
[4] Tsinghua Univ, Dept Civil Engn, Beijing 100084, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Coal gangue; Alkali-activated coal gangue-slag; Compressive strength; Durability; Damage mechanism; EXTERNAL SULFATE ATTACK; BLAST-FURNACE SLAG; COARSE AGGREGATE; PORTLAND-CEMENT; S-H; GEOPOLYMER; RESISTANCE; POWDER;
D O I
10.1016/j.powtec.2020.04.054
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this paper, AACGS concrete was prepared by using raw and 700 degrees C calcined coal gangue as the coarse aggregate and alkali-activated coal gangue-slag (AACGS) as the cementitious material. The variation of compressive strength and durability of AACGS concrete was studied, and the durability damage mechanism of AACGS concrete is analyzed in depth by SEM. The research results showed that coal gangue as coarse aggregate shows high compressive strength and good durability in AACGS concrete. AACGS concrete with calcined CGCA shows great advantages in compressive strength and sulfate attack resistance. Under the condition of large content, its long-term frost resistance durability and chloride ion permeability resistance are not as good as that of raw CGCA. If AACGS concrete is applied to the freeze-thaw environment, the content range of CGCA should be 30%-50%. This study provides an experimental basis for the large-scale utilization of coal gangue. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:112 / 124
页数:13
相关论文
共 50 条
  • [31] Durability of Concrete With Coal Gasification Slag and Coal Gangue Powder
    Zhu, Xiaoliang
    Guo, Zhaoheng
    Yang, Wen
    Song, Wenjing
    FRONTIERS IN MATERIALS, 2022, 8
  • [32] Effects of rice husk ash on strength and durability performance of slag-based alkali-activated concrete
    Pradhan, Shashwati Soumya
    Mishra, Umesh
    Biswal, Sushant Kumar
    Pramanik, Subhadip
    Jangra, Parveen
    Aslani, Farhad
    STRUCTURAL CONCRETE, 2024, 25 (04) : 2839 - 2854
  • [33] Properties and durability of alkali-activated ladle slag
    Elijah Adesanya
    Katja Ohenoja
    Paivo Kinnunen
    Mirja Illikainen
    Materials and Structures, 2017, 50
  • [34] Properties and durability of alkali-activated ladle slag
    Adesanya, Elijah
    Ohenoja, Katja
    Kinnunen, Paivo
    Illikainen, Mirja
    MATERIALS AND STRUCTURES, 2017, 50 (06)
  • [35] A review on alkali-activated slag concrete
    Amer, Ismail
    Kohail, Mohamed
    El-Feky, M. S.
    Rashad, Ahmed
    Khalaf, Mohamed A.
    AIN SHAMS ENGINEERING JOURNAL, 2021, 12 (02) : 1475 - 1499
  • [36] Coagulation Mechanism and Compressive Strength Characteristics Analysis of High-Strength Alkali-Activated Slag Grouting Material
    Li, Mingjing
    Huang, Guodong
    Cui, Yi
    Wang, Bo
    Chang, Binbin
    Yin, Qiaoqiao
    Zhang, Shuwei
    Wang, Qi
    Feng, Jiacheng
    Ge, Ming
    POLYMERS, 2022, 14 (19)
  • [37] Experimental Study on the Durability of Alkali-Activated Slag Concrete after Freeze-Thaw Cycle
    Chen, Bin
    Wang, Jun
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2021, 2021
  • [38] PROPERTIES OF ALKALI-ACTIVATED SLAG AND ITS APPLICATION ON PAVEMENT CONCRETE
    Zhang, Ming
    Ding, Zhu
    Xing, Feng
    Wang, Shu-Ping
    ISISS '2009: INNOVATION & SUSTAINABILITY OF STRUCTURES, VOLS 1 AND 2, 2009, : 234 - 238
  • [39] Impact of Sugar Beet Waste on Strength and Durability of Alkali-Activated Slag Cement
    Gharieb, Mahmoud
    Rashad, Alaa M.
    ACI MATERIALS JOURNAL, 2022, 119 (02) : 79 - 90
  • [40] Shear transfer strength of alkali-activated slag-based concrete
    Liu, Yuzhong
    Zhou, Fen
    Shen, Yin
    Hwang, Hyeon-Jong
    Du, Yunxing
    Mao, Yuguang
    Shi, Caijun
    JOURNAL OF BUILDING ENGINEERING, 2023, 70