Systematic Evaluation of Land Use Regression Models for NO2

被引:115
|
作者
Wang, Meng [1 ]
Beelen, Rob [1 ]
Eeftens, Marloes [1 ]
Meliefste, Kees [1 ]
Hoek, Gerard [1 ]
Brunekreef, Bert [1 ,2 ]
机构
[1] Univ Utrecht, IRAS, Div Environm Epidemiol, NL-3508 TD Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
关键词
AIR-POLLUTION; CONTRASTS; SCALE; GIS;
D O I
10.1021/es204183v
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Land use regression (LUR) models have become popular to explain the spatial variation of air pollution concentrations. Independent evaluation is important. We developed LUR models for nitrogen dioxide (NO2) using measurements conducted at 144 sampling sites in The Netherlands. Sites were randomly divided into training data sets with a size of 24, 36, 48, 72, 96, 108, and 120 sites. LUR models were evaluated using (1) internal "leave-one-out-cross-validation (LOOCV)" within the training data sets and (2) external "hold-out" validation (HV) against independent test data sets. In addition, we calculated Mean Square Error based validation R(2)s. The mean adjusted model and LOOCV R-2 slightly decreased from 0.87 to 0.82 and 0.83 to 0.79, respectively, with an increasing number of training sites. In contrast, the mean HV R-2 was lowest (0.60) with the smallest training sets and increased to 0.74 with the largest training sets. Predicted concentrations were more accurate in sites with out of range values for prediction variables after changing these values to the minimum or maximum of the range observed in the corresponding training data set. LUR models for NO2 perform less well, when evaluated against independent measurements, when they are based on relatively small training sets. In our specific application, models based on as few as 24 training sites, however, achieved acceptable hold out validation R(2)s of, on average, 0.60.
引用
收藏
页码:4481 / 4489
页数:9
相关论文
共 50 条
  • [1] Evaluation of land use regression models for NO2 in El Paso, Texas, USA
    Gonzales, Melissa
    Myers, Orrin
    Smith, Luther
    Olvera, Hector A.
    Mukerjee, Shaibal
    Li, Wen-Whai
    Pingitore, Nicholas
    Amaya, Maria
    Burchiel, Scott
    Berwick, Marianne
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2012, 432 : 135 - 142
  • [2] The transferability of NO and NO2 land use regression models between cities and pollutants
    Allen, Ryan W.
    Amram, Ofer
    Wheeler, Amanda J.
    Brauer, Michael
    [J]. ATMOSPHERIC ENVIRONMENT, 2011, 45 (02) : 369 - 378
  • [3] Land-use regression panel models of NO2 concentrations in Seoul, Korea
    Kim, Youngkook
    Guldmann, Jean-Michel
    [J]. ATMOSPHERIC ENVIRONMENT, 2015, 107 : 364 - 373
  • [4] Evaluation of Land Use Regression Models for NO2 and Particulate Matter in 20 European Study Areas: The ESCAPE Project
    Wang, Meng
    Beelen, Rob
    Basagana, Xavier
    Becker, Thomas
    Cesaroni, Giulia
    de Hoogh, Kees
    Dedele, Audrius
    Declercq, Christophe
    Dimakopoulou, Konstantina
    Eeftens, Marloes
    Forastiere, Francesco
    Galassi, Claudia
    Grazuleviciene, Regina
    Hoffmann, Barbara
    Heinrich, Joachim
    Iakovides, Minas
    Kuenzli, Nino
    Korek, Michal
    Lindley, Sarah
    Moelter, Anna
    Mosler, Gioia
    Madsen, Christian
    Nieuwenhuijsen, Mark
    Phuleria, Harish
    Pedeli, Xanthi
    Raaschou-Nielsen, Ole
    Ranzi, Andrea
    Stehanou, Euripides
    Sugiri, Dorothee
    Stempfelet, Morgane
    Tsai, Ming-Yi
    Lanki, Timo
    Udvardy, Orsolya
    Varro, Mihaly J.
    Wolf, Kathrin
    Weinmayr, Gudrun
    Yli-Tuomi, Tarja
    Hoek, Gerard
    Brunekreef, Bert
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (09) : 4357 - 4364
  • [5] Development and Transferability of Land-use Regression Models For NO2 and NOx in Southern California
    Wu, Jun
    Jiang, Chengsheng
    Wilhelm, Michelle
    Ritz, Beate
    [J]. EPIDEMIOLOGY, 2011, 22 (01) : S211 - S211
  • [6] Comparison of Land Use Regression Models for NO2 and VOC Exposure Studies in Three Cities
    Mukerjec, S.
    Smith, L.
    Chung, K.
    Johnson, M.
    Stallings, C.
    Neas, L.
    [J]. EPIDEMIOLOGY, 2008, 19 (06) : S131 - S131
  • [7] Satellite NO2 data improve national land use regression models for ambient NO2 in a small densely populated country
    Hoek, Gerard
    Eeftens, Marloes
    Beelen, Rob
    Fischer, Paul
    Brunekreef, Bert
    Boersma, K. Folkert
    Veefkind, Pepijn
    [J]. ATMOSPHERIC ENVIRONMENT, 2015, 105 : 173 - 180
  • [8] Effect of monitoring network design on land use regression models for estimating residential NO2 concentration
    Wu, Hao
    Reis, Stefan
    Lin, Chun
    Heal, Mathew R.
    [J]. ATMOSPHERIC ENVIRONMENT, 2017, 149 : 24 - 33
  • [9] Land use regression modelling of NO2 in Sao Paulo, Brazil
    Luminati, Ornella
    de Campos, Bartolomeu Ledebur de Antas
    Fluckiger, Benjamin
    Brentani, Alexandra
    Roosli, Martin
    Fink, Gunther
    de Hoogh, Kees
    [J]. ENVIRONMENTAL POLLUTION, 2021, 289
  • [10] Development of Land Use Regression models for predicting exposure to NO2 and NOx in Metropolitan Perth, Western Australia
    Dirgawati, Mila
    Barnes, Rosanne
    Wheeler, Amanda J.
    Arnold, Anna-Lena
    McCaul, Kieran A.
    Stuart, Amy L.
    Blake, David
    Hinwood, Andrea
    Yeap, Bu B.
    Heyworth, Jane S.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2015, 74 : 258 - 267