Evaluation of land use regression models for NO2 in El Paso, Texas, USA

被引:20
|
作者
Gonzales, Melissa [1 ]
Myers, Orrin
Smith, Luther [2 ]
Olvera, Hector A. [3 ]
Mukerjee, Shaibal [4 ]
Li, Wen-Whai [3 ]
Pingitore, Nicholas [3 ]
Amaya, Maria [3 ]
Burchiel, Scott
Berwick, Marianne
机构
[1] Univ New Mexico, Sch Med, Dept Internal Med, Div Epidemiol & Prevent Med, Albuquerque, NM 87101 USA
[2] Alion Sci & Technol Inc, Res Triangle Pk, NC USA
[3] Univ Texas El Paso, El Paso, TX 79968 USA
[4] US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA
关键词
Nitrogen dioxide; Land use regression; Exposure models; Exposure variability; Monitoring; NITROGEN-DIOXIDE; AIR-POLLUTION; GIS;
D O I
10.1016/j.scitotenv.2012.05.062
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Developing suitable exposure estimates for air pollution health studies is problematic due to spatial and temporal variation in concentrations and often limited monitoring data. Though land use regression models (LURs) are often used for this purpose, their applicability to later periods of time, larger geographic areas, and seasonal variation is largely untested. We evaluate a series of mixed model LURs to describe the spatial-temporal gradients of NO2 across El Paso County. Texas based on measurements collected during cool and warm seasons in 2006-2007 (2006-7). We also evaluated performance of a general additive model (GAM) developed for central El Paso in 1999 to assess spatial gradients across the County in 2006-7. Five LURs were developed iteratively from the study data and their predictions were averaged to provide robust nitrogen dioxide (NO2) concentration gradients across the county. Despite differences in sampling time frame, model covariates and model estimation methods, predicted NO2 concentration gradients were similar in the current study as compared to the 1999 study. Through a comprehensive LUR modeling campaign, it was shown that the nature of the most influential predictive variables remained the same for El Paso between 1999 and 2006-7. The similar LUR results obtained here demonstrate that, at least for El Paso, LURs developed from prior years may still be applicable to assess exposure conditions in subsequent years and in different seasons when seasonal variation is taken into consideration. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:135 / 142
页数:8
相关论文
共 50 条
  • [1] Systematic Evaluation of Land Use Regression Models for NO2
    Wang, Meng
    Beelen, Rob
    Eeftens, Marloes
    Meliefste, Kees
    Hoek, Gerard
    Brunekreef, Bert
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (08) : 4481 - 4489
  • [2] Water use and transfer scenarios in El Paso County, Texas, USA
    Nakat, AC
    Turner, CD
    [J]. WATER INTERNATIONAL, 2004, 29 (03) : 338 - 351
  • [3] Longitudinal Evaluation of Spatial Exposure Models for El Paso, TX, USA
    Myers, O. B.
    Gonzales, M.
    Smith, L.
    Mukerjee, S.
    [J]. EPIDEMIOLOGY, 2008, 19 (06) : S260 - S260
  • [4] Associations between Dust Exposure and Hospitalizations in El Paso, Texas, USA
    Herrera-Molina, Estrella
    Gill, Thomas E.
    Ibarra-Mejia, Gabriel
    Jeon, Soyoung
    [J]. ATMOSPHERE, 2021, 12 (11)
  • [5] The transferability of NO and NO2 land use regression models between cities and pollutants
    Allen, Ryan W.
    Amram, Ofer
    Wheeler, Amanda J.
    Brauer, Michael
    [J]. ATMOSPHERIC ENVIRONMENT, 2011, 45 (02) : 369 - 378
  • [6] Spatial analysis and land use regression of VOCs and NO2 in Dallas, Texas during two seasons
    Smith, Luther A.
    Mukerjee, Shaibal
    Chung, Kuenja C.
    Afghani, Jim
    [J]. JOURNAL OF ENVIRONMENTAL MONITORING, 2011, 13 (04): : 999 - 1007
  • [7] Land-use regression panel models of NO2 concentrations in Seoul, Korea
    Kim, Youngkook
    Guldmann, Jean-Michel
    [J]. ATMOSPHERIC ENVIRONMENT, 2015, 107 : 364 - 373
  • [8] Evaluation of Land Use Regression Models for NO2 and Particulate Matter in 20 European Study Areas: The ESCAPE Project
    Wang, Meng
    Beelen, Rob
    Basagana, Xavier
    Becker, Thomas
    Cesaroni, Giulia
    de Hoogh, Kees
    Dedele, Audrius
    Declercq, Christophe
    Dimakopoulou, Konstantina
    Eeftens, Marloes
    Forastiere, Francesco
    Galassi, Claudia
    Grazuleviciene, Regina
    Hoffmann, Barbara
    Heinrich, Joachim
    Iakovides, Minas
    Kuenzli, Nino
    Korek, Michal
    Lindley, Sarah
    Moelter, Anna
    Mosler, Gioia
    Madsen, Christian
    Nieuwenhuijsen, Mark
    Phuleria, Harish
    Pedeli, Xanthi
    Raaschou-Nielsen, Ole
    Ranzi, Andrea
    Stehanou, Euripides
    Sugiri, Dorothee
    Stempfelet, Morgane
    Tsai, Ming-Yi
    Lanki, Timo
    Udvardy, Orsolya
    Varro, Mihaly J.
    Wolf, Kathrin
    Weinmayr, Gudrun
    Yli-Tuomi, Tarja
    Hoek, Gerard
    Brunekreef, Bert
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (09) : 4357 - 4364
  • [9] Development and Transferability of Land-use Regression Models For NO2 and NOx in Southern California
    Wu, Jun
    Jiang, Chengsheng
    Wilhelm, Michelle
    Ritz, Beate
    [J]. EPIDEMIOLOGY, 2011, 22 (01) : S211 - S211
  • [10] Comparison of Land Use Regression Models for NO2 and VOC Exposure Studies in Three Cities
    Mukerjec, S.
    Smith, L.
    Chung, K.
    Johnson, M.
    Stallings, C.
    Neas, L.
    [J]. EPIDEMIOLOGY, 2008, 19 (06) : S131 - S131