ON A YAMABE-TYPE PROBLEM ON A THREE-DIMENSIONAL THIN ANNULUS

被引:0
|
作者
Ben Ayed, M. [1 ]
Hammami, M. [1 ]
El Mehdi, K. [2 ,3 ]
Ahmedou, M. Ould [4 ]
机构
[1] Fac Sci Sfax, Dept Math, Sfax, Tunisia
[2] Univ Nouakchott, Fac Sci & Tech, Nouakchott, Mauritania
[3] Abdus Salam Int Ctr Theoret Phys, Math Sect, I-34014 Trieste, Italy
[4] Math Inst, D-72076 Tubingen, Germany
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem: (P-epsilon) : -Delta u(epsilon) = u(epsilon)(5), u(epsilon) > 0 in A(epsilon); u(epsilon) = 0 on partial derivative A(epsilon), where {A(epsilon) subset of R-3 : epsilon > 0} is a family of bounded annulus-shaped domains such that A(epsilon) becomes "thin" as epsilon -> 0. We show that, for any given constant C > 0, there exists epsilon(0) > 0 such that for any epsilon < epsilon(0), the problem (P-epsilon) has no solution u(epsilon), whose energy, integral(A epsilon)vertical bar del u(epsilon)vertical bar(2), is less than C. Such a result extends to dimension three a result previously known in higher dimensions. Although the strategy to prove this result is the same as in higher dimensions, we need a more careful and delicate blow up analysis of asymptotic profiles of solutions u(epsilon) when epsilon -> 0.
引用
收藏
页码:813 / 840
页数:28
相关论文
共 50 条
  • [21] Three-dimensional homogeneous Lorentzian Yamabe solitons
    Calvino-Louzao, E.
    Seoane-Bascoy, J.
    Vazquez-Abal, M. E.
    Vazquez-Lorenzo, R.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2012, 82 (02): : 193 - 203
  • [22] Gradient estimates and Harnack inequalities for a Yamabe-type parabolic equation under the Yamabe flow
    Zhang, Liangdi
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (06) : 1201 - 1230
  • [23] Three-dimensional homogeneous Lorentzian Yamabe solitons
    E. Calviño-Louzao
    J. Seoane-Bascoy
    M. E. Vázquez-Abal
    R. Vázquez-Lorenzo
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2012, 82 : 193 - 203
  • [24] Yamabe solitons on three-dimensional Kenmotsu manifolds
    Wang, Yaning
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2016, 23 (03) : 345 - 355
  • [25] Singular solutions to Yamabe-type systems with prescribed asymptotics *
    Caju, Rayssa
    do O, Joao Marcos
    Santos, Almir Silva
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 347 : 246 - 281
  • [26] Positive solutions of anisotropic Yamabe-type equations in Rn
    Monti, Roberto
    Morbidelli, Daniele
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (12) : 4295 - 4304
  • [27] Compactness for a class of Yamabe-type problems on manifolds with boundary
    de Souza, Manasses
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (04) : 3119 - 3159
  • [28] Towers of Bubbles for Yamabe-Type Equations and for the Brezis-Nirenberg Problem in Dimensions n ≥ 7
    Premoselli, Bruno
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (03)
  • [29] Gradient estimates and Harnack inequalities for a Yamabe-type parabolic equation under the Yamabe flow
    Liangdi Zhang
    Science China Mathematics, 2021, 64 : 1201 - 1230
  • [30] Biharmonic Conformal Maps in Dimension Four and Equations of Yamabe-Type
    Baird, Paul
    Ou, Ye-Lin
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (04) : 3892 - 3905