Mixed INAR(1) Poisson regression models:: Analyzing heterogeneity and serial dependencies in longitudinal count data

被引:0
|
作者
Böckenholt, U [1 ]
机构
[1] Univ Illinois, Dept Psychol, Champaign, IL 61820 USA
关键词
autoregression; binomial thinning; count data; finite mixture;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper presents finite mixture versions of integer-valued autoregressive (INAR) Poisson regression models for investigating regularity and predictability of purchase behavior over time. The approach facilitates the analysis of heterogeneity and serial correlation effects as well as conditional and marginal analyses of the effects of covariates. An application to scanner panel data of detergents yields substantive insights into sources of autodependencies in individual category purchases. (C) 1999 Elsevier Science S.A. All rights reserved. JEL classification. C14; C22; C23; C25; M31.
引用
收藏
页码:317 / 338
页数:22
相关论文
共 50 条
  • [31] Mixture Poisson regression models for heterogeneous count data based on latent and fuzzy class analysis
    Miin-Shen Yang
    Chien-Yo Lai
    Soft Computing, 2005, 9 : 519 - 524
  • [32] Inferences in semi-parametric dynamic mixed models for longitudinal count data
    Zheng, Nan
    Sutradhar, Brajendra C.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2018, 70 (01) : 215 - 247
  • [33] Longitudinal Mixed Models with t Random Effects for Repeated Count and Binary Data
    Rao, R. Prabhakar
    Sutradhar, Brajendra C.
    Pandit, V. N.
    ADVANCES AND CHALLENGES IN PARAMETRIC AND SEMI-PARAMETRIC ANALYSIS FOR CORRELATED DATA, 2016, 218 : 41 - 71
  • [34] Inferences in semi-parametric dynamic mixed models for longitudinal count data
    Nan Zheng
    Brajendra C. Sutradhar
    Annals of the Institute of Statistical Mathematics, 2018, 70 : 215 - 247
  • [35] AR(1) latent class models for longitudinal count data
    Henderson, Nicholas C.
    Rathouz, Paul J.
    STATISTICS IN MEDICINE, 2018, 37 (29) : 4441 - 4456
  • [36] Two-part regression models for longitudinal zero-inflated count data
    Alfo, Marco
    Maruotti, Antonello
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2010, 38 (02): : 197 - 216
  • [37] Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data
    Zhang, Xinyan
    Guo, Boyi
    Yi, Nengjun
    PLOS ONE, 2020, 15 (11):
  • [38] APPLICATION OF NONLINEAR MIXED MODELS WITH HARMONIC TERMS FOR ANALYZING LONGITUDINAL DATA.
    Schliep, K.
    Mumford, S.
    Albert, P.
    Yeung, E.
    Ye, A.
    Schisterman, E.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2013, 177 : S181 - S181
  • [39] Analyzing Longitudinal Data Using Machine Learning with Mixed-Effects Models
    Yigit, Pakize
    Ahmed, Syed Ejaz
    EIGHTEENTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, ICMSEM 2024, 2024, 215 : 633 - 646
  • [40] A comparison of Poisson, negative binomial, and semiparametric mixed Poisson regression models - With empirical applications to criminal careers data
    Land, KC
    McCall, PL
    Nagin, DS
    SOCIOLOGICAL METHODS & RESEARCH, 1996, 24 (04) : 387 - 442