Interval regression analysis using support vector machine and quantile regression

被引:0
|
作者
Hwang, CH
Hong, DH
Na, E
Park, H
Shim, J [1 ]
机构
[1] Catholic Univ Daegu, Dept Stat, Taegu 702701, South Korea
[2] Myongji Univ, Dept Math, Yongin 449728, Kyunggido, South Korea
[3] Catholic Univ Daegu, Dept Stat Informat, Kyungbuk 712702, South Korea
[4] Dankook Univ, Div Informat & Comp Sci, Seoul 140714, South Korea
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper deals with interval regression analysis using support vector machine and quantile regression method. The algorithm consists of two phases - the identification of the main trend of the data and the interval regression based on acquired main trend. Using the principle of support vector machine the linear interval regression can be extended to the nonlinear interval regression. Numerical studies are then presented which indicate the performance of this algorithm.
引用
收藏
页码:100 / 109
页数:10
相关论文
共 50 条
  • [41] Least squares Support Vector Machine regression for discriminant analysis
    Van Gestel, T
    Suykens, JAK
    De Brabanter, J
    De Moor, B
    Vandewalle, J
    [J]. IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 2445 - 2450
  • [42] Prediction of Sweetness by Multilinear Regression Analysis and Support Vector Machine
    Zhong, Min
    Chong, Yang
    Nie, Xianglei
    Yan, Aixia
    Yuan, Qipeng
    [J]. JOURNAL OF FOOD SCIENCE, 2013, 78 (09) : S1445 - S1450
  • [43] Upper and lower approximation models in interval regression using regression quantile techniques
    Lee, H
    Tanaka, H
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1999, 116 (03) : 653 - 666
  • [44] The structured elastic net for quantile regression and support vector classification
    Slawski, Martin
    [J]. STATISTICS AND COMPUTING, 2012, 22 (01) : 153 - 168
  • [45] A Comparative Analysis on Linear Regression and Support Vector Regression
    Kavitha, S.
    Varuna, S.
    Ramya, R.
    [J]. PROCEEDINGS OF 2016 ONLINE INTERNATIONAL CONFERENCE ON GREEN ENGINEERING AND TECHNOLOGIES (IC-GET), 2016,
  • [46] Support vector censored quantile regression under random censoring
    Shim, Jooyong
    Hwang, Changha
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (04) : 912 - 919
  • [47] Estimating value at risk with semiparametric support vector quantile regression
    Jooyong Shim
    Yongtae Kim
    Jangtaek Lee
    Changha Hwang
    [J]. Computational Statistics, 2012, 27 : 685 - 700
  • [48] Estimating value at risk with semiparametric support vector quantile regression
    Shim, Jooyong
    Kim, Yongtae
    Lee, Jangtaek
    Hwang, Changha
    [J]. COMPUTATIONAL STATISTICS, 2012, 27 (04) : 685 - 700
  • [49] The structured elastic net for quantile regression and support vector classification
    Martin Slawski
    [J]. Statistics and Computing, 2012, 22 : 153 - 168
  • [50] GPR Data Regression and Clustering by the Fuzzy Support Vector Machine and Regression
    Hosseinzadeh, Shahram
    Shaghaghi, Mehdi
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2020, 93 : 175 - 184