Interval regression analysis using support vector machine and quantile regression

被引:0
|
作者
Hwang, CH
Hong, DH
Na, E
Park, H
Shim, J [1 ]
机构
[1] Catholic Univ Daegu, Dept Stat, Taegu 702701, South Korea
[2] Myongji Univ, Dept Math, Yongin 449728, Kyunggido, South Korea
[3] Catholic Univ Daegu, Dept Stat Informat, Kyungbuk 712702, South Korea
[4] Dankook Univ, Div Informat & Comp Sci, Seoul 140714, South Korea
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper deals with interval regression analysis using support vector machine and quantile regression method. The algorithm consists of two phases - the identification of the main trend of the data and the interval regression based on acquired main trend. Using the principle of support vector machine the linear interval regression can be extended to the nonlinear interval regression. Numerical studies are then presented which indicate the performance of this algorithm.
引用
收藏
页码:100 / 109
页数:10
相关论文
共 50 条
  • [1] Interval Support Vector Machine in Regression Analysis
    Arjmandzadeh, Ameneh
    Effati, Sohrab
    Zamirian, Mohammad
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2011, 2 (03): : 565 - 571
  • [2] Interval regression analysis using quadratic loss support vector machine
    Hong, DH
    Hwang, CH
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (02) : 229 - 237
  • [3] Support vector interval regression networks for interval regression analysis
    Jeng, JT
    Chuang, CC
    Su, SF
    [J]. FUZZY SETS AND SYSTEMS, 2003, 138 (02) : 283 - 300
  • [4] Weighted quantile regression via support vector machine
    Xu, Qifa
    Zhang, Jinxiu
    Jiang, Cuixia
    Huang, Xue
    He, Yaoyao
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (13) : 5441 - 5451
  • [5] A simple quantile regression via support vector machine
    Hwang, C
    Shim, J
    [J]. ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS, 2005, 3610 : 512 - 520
  • [6] A reduced support vector machine approach for interval regression analysis
    Huang, Chia-Hui
    [J]. INFORMATION SCIENCES, 2012, 217 : 56 - 64
  • [7] Interval regression analysis using support vector networks
    Hao, Pei-Yi
    [J]. FUZZY SETS AND SYSTEMS, 2009, 160 (17) : 2466 - 2485
  • [8] Approximation Analysis of Learning Algorithms for Support Vector Regression and Quantile Regression
    Xiang, Dao-Hong
    Hu, Ting
    Zhou, Ding-Xuan
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [9] New normalization methods using support vector machine quantile regression approach in microarray analysis
    Sohn, Insuk
    Kim, Sujong
    Hwang, Changha
    Lee, Jae Won
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (08) : 4104 - 4115
  • [10] Online learning for quantile regression and support vector regression
    Hu, Ting
    Xiang, Dao-Hong
    Zhou, Ding-Xuan
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (12) : 3107 - 3122