Binding of glycosaminoglycan saccharides to hydroxyapatite surfaces: a density functional theory study

被引:11
|
作者
Streeter, Ian [1 ,2 ]
de Leeuw, Nora H. [1 ,2 ]
机构
[1] UCL, Dept Chem, London WC1H 0AJ, England
[2] Univ Coll London, Stanmore HA7 4LP, Middx, England
基金
英国医学研究理事会;
关键词
density functional theory; glycosaminoglycan saccharides; hydroxyapatite surfaces; MOLECULAR-DYNAMICS SIMULATIONS; CITRIC-ACID; ADSORPTION; BONE; PROTEOGLYCANS; STATHERIN; CONFORMATION; AMELOGENIN; INTERFACE; ENERGIES;
D O I
10.1098/rspa.2010.0559
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Density functional theory calculations implemented by the SIESTA code are used to study the interactions of the saccharides N-acetylgalactosamine (GalNAc) and glucuronic acid (GlcA) with the (0001) and (01 (1) over bar0) surfaces of the mineral hydroxyapatite (HAP). GalNAc and GlcA are the constituent monosaccharides of chondroitin, which is a glycosaminoglycan found in bone and cartilage, and whose interactions with HAP have been implicated as a controlling factor in the process of biomineralization. Geometry optimization calculations are used to identify low-energy adsorption structures of the monosaccharides on the HAP surfaces, and to calculate the corresponding adsorption energies. The calculations show that GalNAc interacts with HAP principally through its hydroxy and acetyl amine functional groups, and deprotonated GlcA interacts principally through its hydroxy and carboxylate functional groups. The mode and the strength of adsorption depend on the orientation of the saccharide with respect to the HAP surface, which has implications for the structural conformation of chondroitin chains in the presence of HAP. Both monosaccharides bind more strongly to the (01 (1) over bar0) surface than to the (0001) surface.
引用
收藏
页码:2084 / 2101
页数:18
相关论文
共 50 条
  • [31] Density functional theory study of the partial oxidation of methanol on copper surfaces
    Sakong, S
    Gross, A
    [J]. JOURNAL OF CATALYSIS, 2005, 231 (02) : 420 - 429
  • [32] Ethanol Reforming on Co(0001) Surfaces: A Density Functional Theory Study
    Ma, Yuguang
    Hernandez, Liliana
    Guadarrama-Perez, Carlos
    Balbuena, Perla B.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (05): : 1409 - 1416
  • [33] A density functional theory study of hydrocarbon combustion and synthesis on Ni surfaces
    Abas Mohsenzadeh
    Tobias Richards
    Kim Bolton
    [J]. Journal of Molecular Modeling, 2015, 21
  • [34] Tailoring the Adsorption of Benzene on PdFe Surfaces: A Density Functional Theory Study
    Hensley, Alyssa J. R.
    Zhang, Renqin
    Wang, Yong
    McEwen, Jean-Sabin
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (46): : 24317 - 24328
  • [35] Adhesion of Organic Molecules on Silica Surfaces: A Density Functional Theory Study
    McKenzie, Mathew E.
    Goyal, Sushmit
    Lee, Sung Hoon
    Park, Hyun-Hang
    Savoy, Elizabeth
    Rammohan, Aravind R.
    Mauro, John C.
    Kim, Hyunbin
    Min, Kyoungmin
    Cho, Eunseog
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (01): : 392 - 401
  • [36] DENSITY FUNCTIONAL THEORY OF SUPERIONIC CONDUCTOR SURFACES
    HAERING, M
    YUSSOUFF, M
    DIETERICH, W
    ROMAN, HE
    [J]. SOLID STATE COMMUNICATIONS, 1990, 76 (03) : 281 - 283
  • [37] Density Functional Theory Study of Interface Interactions in Hydroxyapatite/Rutile Composites for Biomedical Applications
    Grubova, Irina Yu.
    Surmeneva, Maria A.
    Huygh, Stijn
    Surmenev, Roman A.
    Neyts, Erik C.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (29): : 15687 - 15695
  • [38] Binding mechanism of uranyl to transferrin implicated by density functional theory study
    Wang, Meng
    Ding, Wanjian
    Wang, Dongqi
    [J]. RSC ADVANCES, 2017, 7 (07) : 3667 - 3675
  • [39] Tuning Amidoximate to Enhance Uranyl Binding: A Density Functional Theory Study
    Abney, Carter W.
    Liu, Shubin
    Lin, Wenbin
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (45): : 11558 - 11565
  • [40] Density functional theory study of arsenite binding to ferric oxides.
    Zhang, NL
    Farrell, J
    Blowers, P
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U550 - U550