Hydrophobicity within the three-dimensional Mercedes-Benz model: Potential of mean force

被引:57
|
作者
Dias, Cristiano L. [1 ,2 ,3 ]
Hynninen, Teemu [4 ,5 ,6 ]
Ala-Nissila, Tapio [5 ,6 ,7 ]
Foster, Adam S. [4 ,5 ,6 ]
Karttunen, Mikko [8 ]
机构
[1] Univ Toronto, Dept Biochem, Toronto, ON M5S 1A8, Canada
[2] Univ Toronto, Dept Mol Genet, Toronto, ON M5S 1A8, Canada
[3] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
[4] Tampere Univ Technol, Dept Phys, FI-33101 Tampere, Finland
[5] Aalto Univ, Dept Appl Phys, Sch Sci, FI-00076 Espoo, Finland
[6] Aalto Univ, COMP CoE, Sch Sci, FI-00076 Espoo, Finland
[7] Brown Univ, Providence, RI 02906 USA
[8] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 134卷 / 06期
基金
加拿大自然科学与工程研究理事会; 芬兰科学院;
关键词
TEMPERATURE-DEPENDENCE; HEAT-CAPACITY; ANTI-COOPERATIVITY; AQUEOUS-SOLUTIONS; NONPOLAR SOLUTES; FREE-ENERGY; WATER; HYDRATION; PRESSURE; ENTROPY;
D O I
10.1063/1.3537734
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We use the three-dimensional Mercedes-Benz model for water and Monte Carlo simulations to study the structure and thermodynamics of the hydrophobic interaction. Radial distribution functions are used to classify different cases of the interaction, namely, contact configurations, solvent separated configurations, and desolvation configurations. The temperature dependence of these cases is shown to be in qualitative agreement with atomistic models of water. In particular, while the energy for the formation of contact configurations is favored by entropy, its strengthening with increasing temperature is accounted for by enthalpy. This is consistent with our simulated heat capacity. An important feature of the model is that it can be used to account for well-converged thermodynamics quantities, e. g., the heat capacity of transfer. Microscopic mechanisms for the temperature dependence of the hydrophobic interaction are discussed at the molecular level based on the conceptual simplicity of the model. (C) 2011 American Institute of Physics. [doi:10.1063/1.3537734]
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A Three-Dimensional Model of Transport and Diffusion of Seeding Agents within Stratus
    Yu X.
    Dai J.
    Jiang W.
    Fan P.
    [J]. Advances in Atmospheric Sciences, 2000, 17 (4) : 617 - 635
  • [42] Reduced Mean Model for Controlling a Three-Dimensional Eel-like Robot
    El Rafei, M.
    Alamir, M.
    Marchand, N.
    Porez, M.
    Boyer, F.
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, VOLS 1-4, 2009, : 645 - 650
  • [43] Surface critical behavior and scaling functions for the three-dimensional mean spherical model
    Amin, Magdy E.
    [J]. PHYSICS LETTERS A, 2006, 358 (02) : 94 - 99
  • [44] Optimized mean-field theory for the three-dimensional XY spin model
    Gouvea, ME
    Pires, AST
    [J]. PHYSICAL REVIEW B, 1996, 54 (21): : 14907 - 14909
  • [45] Three-Dimensional Printing of a Model Atomic Force Microscope to Measure Force-Distance Profiles
    Gruber, Daniel
    Perez, Tynan
    Layug, Bege Q.
    Ohama, Margaret
    Tran, Lydia
    Rojas, Luis Angel Flores
    Garcia, A. Xavier
    Liu, Gang-yu
    Miller, William J. W.
    [J]. JOURNAL OF CHEMICAL EDUCATION, 2020, 97 (03) : 845 - 849
  • [46] A three-dimensional potential of mean force to improve backbone and sidechain hydrogen bond geometry in Xplor-NIH protein structure determination
    Schwieters, Charles D.
    Bermejo, Guillermo A.
    Clore, G. Marius
    [J]. PROTEIN SCIENCE, 2020, 29 (01) : 100 - 110
  • [47] Force fluctuations in three-dimensional suspended fibroblasts
    Schlosser, Florian
    Rehfeldt, Florian
    Schmidt, Christoph F.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2015, 370 (1661)
  • [48] Force fluctuations in three-dimensional suspended fibroblasts
    Schlosser, F.
    Schmidt, C. F.
    Rehfeldt, F.
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2015, 26
  • [49] Three-Dimensional Kelvin Probe Force Microscopy
    Geng, Junyuan
    Zhang, Hao
    Meng, Xianghe
    Gao, Haibo
    Rong, Weibin
    Xie, Hui
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (28) : 32719 - 32728
  • [50] Three-dimensional force calibration of optical tweezers
    Singer, W
    Bernet, S
    Hecker, N
    Ritsch-Marte, M
    [J]. JOURNAL OF MODERN OPTICS, 2000, 47 (14-15) : 2921 - 2931