dirichlet process prior;
exponential family;
gene-environment interaction;
logistic regression;
ovarian cancer;
stratification factors;
zero inflated;
D O I:
10.1111/j.1541-0420.2007.00750.x
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
In case-control studies of gene-environment association with disease, when genetic and environmental exposures can be assumed to be independent in the underlying population, one may exploit the independence in order to derive more efficient estimation techniques than the traditional logistic regression analysis (Chatterjee and Carroll, 2005, Biometrika 92, 399-418). However, covariates that stratify the population, such as age, ethnicity and alike, could potentially lead to nonindependence. In this article, we provide a novel semiparametric Bayesian approach to model stratification effects under the assumption of gene-environment independence in the control population. We illustrate the methods by applying them to data from a population-based case-control study on ovarian cancer conducted in Israel. A simulation study is conducted to compare our method with other popular choices. The results reflect that the serniparametric Bayesian model allows incorporation of key scientific evidence in the form of a prior and offers a flexible, robust alternative when standard parametric model assumptions do not hold.
机构:
Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USAUniv Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA
Lobach, Iryna
Sampson, Joshua
论文数: 0引用数: 0
h-index: 0
机构:
NCI, NIH, Bethesda, MD 20892 USAUniv Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA
Sampson, Joshua
论文数: 引用数:
h-index:
机构:
Alekseyenko, Alexander
论文数: 引用数:
h-index:
机构:
Lobach, Siarhei
Zhang, Li
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA
Univ Calif San Francisco, Dept Med, San Francisco, CA USA
Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, San Francisco, CA 94143 USAUniv Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA
机构:
Indiana Univ, Dept Biostat, Indianapolis, IN 46204 USA
Indiana Univ, Ctr Computat Biol & Bioinformat, Indianapolis, IN 46204 USA
410 West 10th St,Suite 5000, Indianapolis, IN 46202 USAIndiana Univ, Dept Biostat, Indianapolis, IN 46204 USA
Zang, Yong
Fung, Wing Kam
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R ChinaIndiana Univ, Dept Biostat, Indianapolis, IN 46204 USA
Fung, Wing Kam
Cao, Sha
论文数: 0引用数: 0
h-index: 0
机构:
Indiana Univ, Dept Biostat, Indianapolis, IN 46204 USA
Indiana Univ, Ctr Computat Biol & Bioinformat, Indianapolis, IN 46204 USAIndiana Univ, Dept Biostat, Indianapolis, IN 46204 USA
Cao, Sha
Ng, Hon Keung Tony
论文数: 0引用数: 0
h-index: 0
机构:
Southern Methodist Univ, Dept Stat Sci, Dallas, TX USAIndiana Univ, Dept Biostat, Indianapolis, IN 46204 USA
Ng, Hon Keung Tony
Zhang, Chi
论文数: 0引用数: 0
h-index: 0
机构:
Indiana Univ, Ctr Computat Biol & Bioinformat, Indianapolis, IN 46204 USA
Indiana Univ, Dept Med & Mol Genet, Indianapolis, IN 46204 USAIndiana Univ, Dept Biostat, Indianapolis, IN 46204 USA