Nonlinear total least-squares variance component estimation for GM(1,1) model

被引:7
|
作者
Wang, Leyang [1 ]
Sun, Jianqiang [1 ]
Wu, Qiwen [1 ]
机构
[1] East China Univ Technol, Fac Geomat, Nanchang 330013, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
GM(1,1) model; Minimum norm quadratic unbiased estimation (MINQUE); Total least-squares (TLS); Unequal-precision measurement; Variance component estimation (VCE); GREY; PREDICT;
D O I
10.1016/j.geog.2021.02.006
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The solution of the grey model (GM(1,1) model) generally involves equal-precision observations, and the (co)variance matrix is established from the prior information. However, the data are generally available with unequal-precision measurements in reality. To deal with the errors of all observations for GM(1,1) model with errors-in-variables (EIV) structure, we exploit the total least-squares (TLS) algorithm to estimate the parameters of GM(1,1) model in this paper. Ignoring that the effect of the improper prior stochastic model and the homologous observations may degrade the accuracy of parameter estimation, we further present a nonlinear total least-squares variance component estimation approach for GM(1,1) model, which resorts to the minimum norm quadratic unbiased estimation (MINQUE). The practical and simulative experiments indicate that the presented approach has significant merits in improving the predictive accuracy in comparison with control methods. (C) 2021 Editorial office of Geodesy and Geodynamics. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
引用
收藏
页码:211 / 217
页数:7
相关论文
共 50 条
  • [11] Locally weighted total least-squares variance component estimation for modeling urban air pollution
    Arezoo Mokhtari
    Behnam Tashayo
    [J]. Environmental Monitoring and Assessment, 2022, 194
  • [12] Variance component estimation in errors-in-variables models and a rigorous total least-squares approach
    Mahboub, Vahid
    [J]. STUDIA GEOPHYSICA ET GEODAETICA, 2014, 58 (01) : 17 - 40
  • [13] Combination of GNSS orbits using least-squares variance component estimation
    Gustavo Mansur
    Pierre Sakic
    Andreas Brack
    Benjamin Männel
    Harald Schuh
    [J]. Journal of Geodesy, 2022, 96
  • [14] Combination of GNSS orbits using least-squares variance component estimation
    Mansur, Gustavo
    Sakic, Pierre
    Brack, Andreas
    Maennel, Benjamin
    Schuh, Harald
    [J]. JOURNAL OF GEODESY, 2022, 96 (11)
  • [15] Nonlinear least-squares estimation
    Pollard, D
    Radchenko, P
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (02) : 548 - 562
  • [16] NONLINEAR LEAST-SQUARES ESTIMATION
    HARTLEY, HO
    BOOKER, A
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (02): : 638 - 650
  • [17] GM(1,1;λ) with Constrained Linear Least Squares
    Yeh, Ming-Feng
    Chang, Ming-Hung
    [J]. AXIOMS, 2021, 10 (04)
  • [18] Least-Squares Variance Component Estimation Applied to GPS Geometry-Based Observation Model
    Amiri-Simkooei, A. R.
    Zangeneh-Nejad, F.
    Asgari, J.
    [J]. JOURNAL OF SURVEYING ENGINEERING, 2013, 139 (04) : 176 - 187
  • [19] Least-squares estimation of GARCH(1,1) models with heavy-tailed errors
    Preminger, Arie
    Storti, Giuseppe
    [J]. ECONOMETRICS JOURNAL, 2017, 20 (02): : 221 - 258
  • [20] GM(1,1) model based on least absolute estimation of residual
    Deng, Yonghe
    [J]. ADVANCES IN CIVIL ENGINEERING, PTS 1-4, 2011, 90-93 : 2881 - 2886