On the number of support points of maximin and bayesian optimal designs

被引:21
|
作者
Braess, Dietrich [1 ]
Dette, Holger [1 ]
机构
[1] Ruhr Univ Bochum, Bochum, Germany
来源
ANNALS OF STATISTICS | 2007年 / 35卷 / 02期
关键词
bayesian optimal design; maximin optimal design; nonlinear models;
D O I
10.1214/009053606000001307
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider maximin and Bayesian D-optimal designs for nonlinear regression models. The maximin criterion requires the specification of a region for the nonlinear parameters in the model, while the Bayesian optimality criterion assumes that a prior for these parameters is available. On interval parameter spaces, it was observed empirically by many authors that an increase of uncertainty in the prior information (i.e., a larger range for the parameter space in the maximin criterion or a larger variance of the prior in the Bayesian criterion) yields a larger number of support points of the corresponding optimal designs. In this paper, we present analytic tools which are used to prove this phenomenon in concrete situations. The proposed methodology can be used to explain many empirically observed results in the literature. Moreover, it explains why maximin D-optimal designs are usually supported at more points than Bayesian D-optimal designs.
引用
收藏
页码:772 / 792
页数:21
相关论文
共 50 条
  • [1] Maximin and Bayesian optimal designs for regression models
    Dette, Holger
    Haines, Linda M.
    Imhof, Lorens A.
    [J]. STATISTICA SINICA, 2007, 17 (02) : 463 - 480
  • [2] Bayesian and maximin optimal designs for heteroscedastic regression models
    Dette, H
    Haines, LM
    Imhof, LA
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2005, 33 (02): : 221 - 241
  • [3] MINIMAL NUMBER OF SUPPORT-POINTS FOR MINI-MAX OPTIMAL DESIGNS
    WONG, WK
    [J]. STATISTICS & PROBABILITY LETTERS, 1993, 17 (05) : 405 - 409
  • [4] Bayesian and maximin A-optimal designs for spline regression models with unknown knots
    Rankin, Isaac
    Zhou, Julie
    [J]. STATISTICAL PAPERS, 2024, 65 (04) : 2011 - 2032
  • [5] Bayesian and maximin optimal designs for heteroscedastic multi-factor regression models
    Lei He
    Daojiang He
    [J]. Statistical Papers, 2023, 64 : 1997 - 2013
  • [6] Bayesian and maximin optimal designs for heteroscedastic multi-factor regression models
    He, Lei
    He, Daojiang
    [J]. STATISTICAL PAPERS, 2023, 64 (06) : 1997 - 2013
  • [7] Bayesian D-optimal designs on a fixed number of design points for heteroscedastic polynomial models
    Dette, H
    Wong, WK
    [J]. BIOMETRIKA, 1998, 85 (04) : 869 - 882
  • [8] Maximin optimal designs for a compartmental model
    Biedermann, S
    Dette, H
    Pepelyshev, A
    [J]. MODA 7 - ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, PROCEEDINGS, 2004, : 41 - 49
  • [9] Maximin Optimal Designs for Cluster Randomized Trials
    Wu, Sheng
    Wong, Weng Kee
    Crespi, Catherine M.
    [J]. BIOMETRICS, 2017, 73 (03) : 916 - 926
  • [10] Asymptotically optimal maximin distance Latin hypercube designs
    Tonghui Pang
    Yan Wang
    Jian-Feng Yang
    [J]. Metrika, 2022, 85 : 405 - 418