Bayesian and maximin optimal designs for heteroscedastic multi-factor regression models

被引:0
|
作者
Lei He
Daojiang He
机构
[1] Anhui Normal University,Department of Statistics
来源
Statistical Papers | 2023年 / 64卷
关键词
Bayesian design; Maximin design; Product designs; Multi-factor models; Heteroscedastic errors; 62K05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we mainly investigate the problem of optimal designs for multi-factor regression models with partially known heteroscedastic structure. The Bayesian Φq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi _q$$\end{document}-optimality criterion proposed by Dette and Wong (Ann Stat 24:2108–2127, 1996), which closely resembles Kiefer’s Φk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi _k$$\end{document}-class of criteria, and the standardized maximin D-optimal criterion are considered. More precisely, for heteroscedastic Kronecker product models, it is shown that the product designs formed from optimal designs for sub-models with a single factor are optimal under the two robust criteria. For additive models with intercept, however, sufficient conditions are given in order to search for Bayesian Φq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi _q$$\end{document}-optimal and standardized maximin D-optimal product designs. Finally, several examples are presented to illustrate the obtained theoretical results.
引用
收藏
页码:1997 / 2013
页数:16
相关论文
共 50 条