Bayesian variable selection approach to a Bernstein polynomial regression model with stochastic constraints

被引:2
|
作者
Choi, Taeryon [1 ]
Kim, Hea-Jung [2 ]
Jo, Seongil [1 ]
机构
[1] Korea Univ, Dept Stat, Seoul, South Korea
[2] Dongguk Univ Seoul, Dept Stat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Bernstein polynomials; hierarchical priors; monotone constraint; rectangle-screened normal distribution; stochastic restriction; variable selection; MULTIVARIATE NORMAL-DISTRIBUTIONS; UNCERTAINTY; SUBJECT;
D O I
10.1080/02664763.2016.1143456
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper provides a Bayesian estimation procedure for monotone regression models incorporating the monotone trend constraint subject to uncertainty. For monotone regression modeling with stochastic restrictions, we propose a Bayesian Bernstein polynomial regression model using two-stage hierarchical prior distributions based on a family of rectangle-screened multivariate Gaussian distributions extended from the work of Gurtis and Ghosh [7]. This approach reflects the uncertainty about the prior constraint, and thus proposes a regression model subject to monotone restriction with uncertainty. Based on the proposed model, we derive the posterior distributions for unknown parameters and present numerical schemes to generate posterior samples. We show the empirical performance of the proposed model based on synthetic data and real data applications and compare the performance to the Bernstein polynomial regression model of Curtis and Ghosh [7] for the shape restriction with certainty. We illustrate the effectiveness of our proposed method that incorporates the uncertainty of the monotone trend and automatically adapts the regression function to the monotonicity, through empirical analysis with synthetic data and real data applications.
引用
收藏
页码:2751 / 2771
页数:21
相关论文
共 50 条
  • [41] Gene selection: a Bayesian variable selection approach
    Lee, KE
    Sha, NJ
    Dougherty, ER
    Vannucci, M
    Mallick, BK
    BIOINFORMATICS, 2003, 19 (01) : 90 - 97
  • [42] HIERARCHICAL VARIABLE SELECTION IN POLYNOMIAL REGRESSION-MODELS
    PEIXOTO, JL
    AMERICAN STATISTICIAN, 1987, 41 (04): : 311 - 313
  • [43] A study of variable bandwidth selection for local polynomial regression
    Fan, JQ
    Gijbels, I
    Hu, TC
    Huang, LS
    STATISTICA SINICA, 1996, 6 (01) : 113 - 127
  • [44] Stochastic Modeling of Adaptive Trait Evolution in Phylogenetics: A Polynomial Regression and Approximate Bayesian Computation Approach
    Jhwueng, Dwueng-Chwuan
    Chang, Chia-Hua
    MATHEMATICS, 2025, 13 (01)
  • [45] Methods and Tools for Bayesian Variable Selection and Model Averaging in Normal Linear Regression
    Forte, Anabel
    Garcia-Donato, Gonzalo
    Steel, Mark
    INTERNATIONAL STATISTICAL REVIEW, 2018, 86 (02) : 237 - 258
  • [46] Model selection in neutron Compton scattering - a Bayesian approach with physical constraints
    Krzystyniak, M.
    Romanelli, G.
    Druzbicki, K.
    Tolchenov, R.
    Gigg, M.
    Hewer, B.
    Fernandez-Alonso, F.
    VII INTERNATIONAL WORKSHOP ON ELECTRON-VOLT NEUTRON SPECTROSCOPY, 2018, 1055
  • [47] A Bayesian approach for predicting with polynomial regression of unknown degree
    Guttman, I
    Peña, D
    Redondas, D
    TECHNOMETRICS, 2005, 47 (01) : 23 - 33
  • [48] Conjugate priors and variable selection for Bayesian quantile regression
    Alhamzawi, Rahim
    Yu, Keming
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 64 : 209 - 219
  • [49] Bayesian linear regression and variable selection for spectroscopic calibration
    Chen, Tao
    Martin, Elaine
    ANALYTICA CHIMICA ACTA, 2009, 631 (01) : 13 - 21
  • [50] Bayesian structured variable selection in linear regression models
    Wang, Min
    Sun, Xiaoqian
    Lu, Tao
    COMPUTATIONAL STATISTICS, 2015, 30 (01) : 205 - 229