Bayesian variable selection approach to a Bernstein polynomial regression model with stochastic constraints

被引:2
|
作者
Choi, Taeryon [1 ]
Kim, Hea-Jung [2 ]
Jo, Seongil [1 ]
机构
[1] Korea Univ, Dept Stat, Seoul, South Korea
[2] Dongguk Univ Seoul, Dept Stat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Bernstein polynomials; hierarchical priors; monotone constraint; rectangle-screened normal distribution; stochastic restriction; variable selection; MULTIVARIATE NORMAL-DISTRIBUTIONS; UNCERTAINTY; SUBJECT;
D O I
10.1080/02664763.2016.1143456
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper provides a Bayesian estimation procedure for monotone regression models incorporating the monotone trend constraint subject to uncertainty. For monotone regression modeling with stochastic restrictions, we propose a Bayesian Bernstein polynomial regression model using two-stage hierarchical prior distributions based on a family of rectangle-screened multivariate Gaussian distributions extended from the work of Gurtis and Ghosh [7]. This approach reflects the uncertainty about the prior constraint, and thus proposes a regression model subject to monotone restriction with uncertainty. Based on the proposed model, we derive the posterior distributions for unknown parameters and present numerical schemes to generate posterior samples. We show the empirical performance of the proposed model based on synthetic data and real data applications and compare the performance to the Bernstein polynomial regression model of Curtis and Ghosh [7] for the shape restriction with certainty. We illustrate the effectiveness of our proposed method that incorporates the uncertainty of the monotone trend and automatically adapts the regression function to the monotonicity, through empirical analysis with synthetic data and real data applications.
引用
收藏
页码:2751 / 2771
页数:21
相关论文
共 50 条
  • [1] A variable selection approach to monotonic regression with Bernstein polynomials
    Curtis, S. McKay
    Ghosh, Sujit K.
    JOURNAL OF APPLIED STATISTICS, 2011, 38 (05) : 961 - 976
  • [2] Bayesian analysis of semiparametric Bernstein polynomial regression models for data with sample selection
    Kim, Hea-Jung
    Roh, Taeyoung
    Choi, Taeryon
    STATISTICS, 2019, 53 (05) : 1082 - 1111
  • [3] BAYESIAN APPROACH TO MODEL INADEQUACY FOR POLYNOMIAL REGRESSION
    BLIGHT, BJN
    OTT, L
    BIOMETRIKA, 1975, 62 (01) : 79 - 88
  • [4] A Bernstein polynomial approach of the robust regression
    Semmar, Sihem
    Fetitah, Omar
    Attouch, Mohammed Kadi
    Khardani, Salah
    Almanjahie, Ibrahim M.
    AIMS MATHEMATICS, 2024, 9 (11): : 32409 - 32441
  • [5] A Bayesian variable selection approach to longitudinal quantile regression
    Kedia, Priya
    Kundu, Damitri
    Das, Kiranmoy
    STATISTICAL METHODS AND APPLICATIONS, 2023, 32 (01): : 149 - 168
  • [6] A Bayesian variable selection approach to longitudinal quantile regression
    Priya Kedia
    Damitri Kundu
    Kiranmoy Das
    Statistical Methods & Applications, 2023, 32 : 149 - 168
  • [7] Model uncertainty and variable selection in Bayesian lasso regression
    Chris Hans
    Statistics and Computing, 2010, 20 : 221 - 229
  • [8] Objective Bayesian variable selection in linear regression model
    Kang, Sang Gil
    Kim, Dal Ho
    Lee, Woo Dong
    Kim, Yongku
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (06) : 1133 - 1157
  • [9] Application of Bayesian variable selection in logistic regression model
    Bangchang, Kannat Na
    AIMS MATHEMATICS, 2024, 9 (05): : 13336 - 13345
  • [10] Model uncertainty and variable selection in Bayesian lasso regression
    Hans, Chris
    STATISTICS AND COMPUTING, 2010, 20 (02) : 221 - 229