Compact Fuel Processor by Employing Monolithic Catalyst for 1 kW Class Residential Polymer Electrolyte Fuel Cells

被引:2
|
作者
Komori, Shingo [2 ]
Kimura, Masae [2 ]
Watanabe, Keita [2 ]
Takazoe, Toshihiko [3 ]
Naoi, Tokio [4 ]
Miyao, Toshihiro [1 ]
Higashiyama, Kazutoshi [1 ]
Yamashita, Hisao [1 ]
Watanabe, Masahiro [1 ]
机构
[1] Univ Yamanashi, Fuel Cell Nanomat Ctr, Kofu, Yamanashi 4000021, Japan
[2] Univ Yamanashi, Interdisciplinary Grad Sch Med & Engn, Kofu, Yamanashi 4008510, Japan
[3] Sanyou Kikou Co Ltd, Yamanashi 4000202, Japan
[4] Nippon Chem Plant Consultant Co Ltd, Chiyoda Ku, Tokyo 1010045, Japan
关键词
Fuel processor; Monolithic catalyst; Polymer electrolyte fuel cell; Residential system; Steam reforming; Hydrogen; PREFERENTIAL OXIDATION; GAS; PERFORMANCE;
D O I
10.1627/jpi.54.52
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A compact fuel processor for 1 kW class PEFCs was designed with dramatically reduced volume and catalyst amount by employing a monolithic catalyst compared with those for existing conventional ones. Only 0.7 g of precious metal was used for all catalysts. A high thermal efficiency, 82.3% HHV, was achieved at 100% load, with a low pressure drop, 3.6 kPa. The outlet gas, with a composition of 75.0 vol% H-2, 19.2 vol% CO2, 2.2 vol% CH4, and 20 ppm CO, was obtained under normal conditions.
引用
收藏
页码:52 / 55
页数:4
相关论文
共 50 条
  • [41] Impact of Nonadsorbed Ionomer on Viscosity of Catalyst Inks for Polymer Electrolyte Fuel Cells
    Yoshimune, Watru
    Harada, Masashi
    [J]. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2020, 93 (02) : 302 - 307
  • [42] Analysis of Water Adsorption and Condensation in Catalyst Layers for Polymer Electrolyte Fuel Cells
    Mashio, Tetsuya
    Sato, Kazuyuki
    Ohma, Atsushi
    [J]. ELECTROCHIMICA ACTA, 2014, 140 : 238 - 249
  • [43] Gas Flow Sputtering of Catalyst Layers for Polymer Electrolyte Membrane Fuel Cells
    Vasic, Stanislav
    Guenther, Bernd H.
    [J]. CHEMIE INGENIEUR TECHNIK, 2012, 84 (12) : 2204 - 2209
  • [44] Performance of a polymer electrolyte membrane fuel cell system fueled with hydrogen generated by a fuel processor
    Jannelli, E.
    Minutillo, M.
    Galloni, E.
    [J]. JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2007, 4 (04): : 435 - 440
  • [45] Effects of catalyst loading gradient in catalyst layers on performance of polymer electrolyte membrane fuel cells
    Roshandel, Ramin
    Ahmadi, Farzad
    [J]. RENEWABLE ENERGY, 2013, 50 : 921 - 931
  • [46] Analysis of 3000 T class submarines equipped with polymer electrolyte fuel cells
    Ghosh, P. C.
    Vasudeva, U.
    [J]. ENERGY, 2011, 36 (05) : 3138 - 3147
  • [47] Direct type polymer electrolyte fuel cells using methoxy fuel
    Tsutsumi, Y
    Nakano, Y
    Kajitani, S
    Yamasita, S
    [J]. ELECTROCHEMISTRY, 2002, 70 (12) : 984 - 987
  • [48] Development of novel Ru catalyst of preferential CO oxidation for residential polymer electrolyte fuel cell systems
    Echigo, M
    Tabata, T
    [J]. CATALYSIS TODAY, 2004, 90 (3-4) : 269 - 275
  • [49] Evaluation technologies of polymer electrolyte fuel cells
    Mitsuda, K
    Maeda, H
    Fukumoto, H
    [J]. DENKI KAGAKU, 1998, 66 (02): : 140 - 144
  • [50] Expert diagnosis of polymer electrolyte fuel cells
    Davies, B.
    Jackson, L.
    Dunnett, S.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (16) : 11724 - 11734