SCALAR CURVATURE OF HYPERSURFACES WITH CONSTANT MEAN CURVATURE IN UNIT SPHERES

被引:1
|
作者
Chen, Gangyi [1 ]
Li, Haizhong [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Clifford hypersurfaces; scalar curvature; constant mean curvature; pinching constants; MINIMAL HYPERSURFACES; CLIFFORD TORUS; SPACE-FORMS;
D O I
10.1142/S0129167X1100674X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be an n-dimensional closed hypersurface with constant mean curvature H in a unit sphere S(n+1), n <= 8, and S the squared length of the second fundamental form of M. If vertical bar H vertical bar <= epsilon(n), then there exists a positive constant alpha(n, H), which depends only on n and H, such that if S(0) <= S <= S(0) + alpha(n, H), then S equivalent to S(0) and M is isometric to a Clifford hypersurface, where epsilon(n) is a positive constant depending only on n and S(0) = n + n(3)/2(n-1)H(2) + n(n-2)/2(n-1)root n(2)H(4) + 4(n-1)H(2).
引用
收藏
页码:131 / 143
页数:13
相关论文
共 50 条
  • [21] Möbius geometry of hypersurfaces with constant mean curvature and scalar curvature
    Haizhong Li
    Changping Wang
    [J]. manuscripta mathematica, 2003, 112 : 1 - 13
  • [22] A Characterization of Quadric Constant Scalar Curvature Hypersurfaces of Spheres
    Oscar M. Perdomo
    Guoxin Wei
    [J]. The Journal of Geometric Analysis, 2014, 24 : 1882 - 1890
  • [23] On the Gauss map of hypersurfaces with constant scalar curvature in spheres
    Alencar, H
    Rosenberg, H
    Santos, W
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (12) : 3731 - 3739
  • [24] A Characterization of Quadric Constant Scalar Curvature Hypersurfaces of Spheres
    Perdomo, Oscar M.
    Wei, Guoxin
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (04) : 1882 - 1890
  • [25] A characterization of quadric constant mean curvature hypersurfaces of spheres
    Alias, Luis J.
    Brasil, Aldir, Jr.
    Perdomo, Oscar
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (03) : 687 - 703
  • [26] On the stability index of hypersurfaces with constant mean curvature in spheres
    Alias, Luis J.
    Brasil, Aldir, Jr.
    Perdomo, Oscar
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (11) : 3685 - 3693
  • [27] A Characterization of Quadric Constant Mean Curvature Hypersurfaces of Spheres
    Luis J. Alías
    Aldir Brasil
    Oscar Perdomo
    [J]. Journal of Geometric Analysis, 2008, 18
  • [28] Scalar curvature estimates of constant mean curvature hypersurfaces in locally symmetric spaces
    Eudes L. de Lima
    Henrique F. de Lima
    Fábio R. dos Santos
    Marco A. L. Velásquez
    [J]. São Paulo Journal of Mathematical Sciences, 2019, 13 : 320 - 341
  • [29] Scalar curvature estimates of constant mean curvature hypersurfaces in locally symmetric spaces
    de Lima, Eudes L.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    Velasquez, Marco A. L.
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (01): : 320 - 341
  • [30] HYPERSURFACES WITH CONSTANT SCALAR CURVATURE
    CHENG, SY
    YAU, ST
    [J]. MATHEMATISCHE ANNALEN, 1977, 225 (03) : 195 - 204