Anomalous diffusion on the percolating networks

被引:3
|
作者
Liu, D [1 ]
Li, HQ
Chang, FX
Lin, LB
机构
[1] Sichuan Union Univ, Dept Phys, Chengdu 610064, Peoples R China
[2] Sichuan Union Univ, Open Lab Radiat Phys & Technol, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1142/S0218348X98000171
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
According to the standard diffusion equation, by introducing reasonably into an anomalous diffusion coefficient, the generalized diffusion equation, which describes anomalous diffusion on the percolating networks with a power-law distribution of waiting times, is derived in this paper. The solution of the generalized diffusion equation is obtained by using the method, which is used by Barta. The problems of anomalous diffusion on percolating networks with a power-law distribution of waiting times, which are not solved by Barta, are resolved.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 50 条
  • [41] ANOMALOUS AHARONOV-BOHM EFFECT IN PERCOLATING SUPERCONDUCTING FILMS
    GERBER, A
    DEUTSCHER, G
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1989, 157 (01) : 135 - 139
  • [42] Fractional dynamics on networks: Emergence of anomalous diffusion and Levy flights
    Riascos, A. P.
    Mateos, Jose L.
    [J]. PHYSICAL REVIEW E, 2014, 90 (03)
  • [43] Classification, inference and segmentation of anomalous diffusion with recurrent neural networks
    Argun, Aykut
    Volpe, Giovanni
    Bo, Stefano
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (29)
  • [44] Semantic segmentation of anomalous diffusion using deep convolutional networks
    Qu, Xiang
    Hu, Yi
    Cai, Wenjie
    Xu, Yang
    Ke, Hu
    Zhu, Guolong
    Huang, Zihan
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [45] Flow Dimension and Anomalous Diffusion of Aquifer Tests in Fracture Networks
    Cello, Pablo A.
    Walker, Douglas D.
    Valocchi, Albert J.
    Loftis, Bruce
    [J]. VADOSE ZONE JOURNAL, 2009, 8 (01): : 258 - 268
  • [46] CLASSICAL DIFFUSION, DRIFT, AND TRAPPING IN RANDOM PERCOLATING SYSTEMS
    PANDEY, RB
    [J]. PHYSICAL REVIEW B, 1984, 30 (01): : 489 - 491
  • [47] Kinetics of diffusion-limited reactions with biased diffusion in percolating to compact substrates
    Gonçalves, NJ
    Duarte, JAMS
    Cadilhe, A
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2005, 33 (1-3) : 331 - 337
  • [48] Structure of percolating clusters in random clustered networks
    Hasegawa, Takehisa
    Mizutaka, Shogo
    [J]. PHYSICAL REVIEW E, 2020, 101 (06)
  • [49] Percolating plasmonic networks for light emission control
    Gaio, Michele
    Castro-Lopez, Marta
    Renger, Jan
    van Hulst, Niek
    Sapienza, Riccardo
    [J]. FARADAY DISCUSSIONS, 2015, 178 : 237 - 252
  • [50] CLUSTER SHAPES IN THE CONTINUUM DESCRIPTION OF PERCOLATING NETWORKS
    LORENZ, B
    ORGZALL, I
    [J]. PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1995, 71 (03): : 407 - 412