Resolution of linear magnetostatic inverse problem using iterative regularization

被引:6
|
作者
Bégot, S [1 ]
Voisin, E [1 ]
Hiebel, P [1 ]
Kauffmann, JM [1 ]
Artioukhine, E [1 ]
机构
[1] IGE, ALSTOM Inc, F-90000 Belfort, France
来源
关键词
D O I
10.1051/epjap:2000179
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper deals with the solution of linear inverse problems in magnetostatics. The case the authors have broached is finding the current density on the basis of magnetic field values. Solving this kind of equation is an ill-posed problem. Exact magnetic field values and measured values lead to different cases, each of which is presented. To solve them, the authors use the conjugate gradient method with iterative regularization. They present numerical results for the design of magnets, gradient and shim coils, and numerical results for the problem of recovering current density values from measured field values.
引用
下载
收藏
页码:123 / 131
页数:9
相关论文
共 50 条
  • [21] Solving the inverse magnetostatic problem using fictitious magnetic charges
    Wautischer, Gregor
    Bruckner, Florian
    Abert, Claas
    Suess, Dieter
    Koeck, Helmut
    Sanchez, Mikel Eizaguirre
    AIP ADVANCES, 2018, 8 (05)
  • [22] A numerical method for a magnetostatic inverse problem using the edge element
    Shigeta, T
    Onishi, K
    INVERSE PROBLEMS IN ENGINEERING MECHANICS, 1998, : 509 - 518
  • [23] A numerical method for a magnetostatic inverse problem using the edge element
    Shigeta, T
    Onishi, K
    INVERSE PROBLEMS AND RELATED TOPICS, 2000, 419 : 145 - 153
  • [24] D-optimal experimental design applied to a linear magnetostatic inverse problem
    Bégot, S
    Voisin, E
    Hiebel, P
    Artioukhine, E
    Kauffmann, JM
    IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) : 1065 - 1068
  • [25] An iterative method for the Cauchy problem in linear elasticity with fading regularization effect
    Delvare, Franck
    Cimetiere, Alain
    Hanus, Jean-Luc
    Bailly, Patrice
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (49-52) : 3336 - 3344
  • [26] On the solution of the inverse problem of magnetostatic tomography
    A. N. Pechenkov
    V. E. Shcherbinin
    Russian Journal of Nondestructive Testing, 2009, 45 : 176 - 190
  • [27] On the solution of the inverse problem of magnetostatic tomography
    Pechenkov, A. N.
    Shcherbinin, V. E.
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2009, 45 (03) : 176 - 190
  • [28] Inverse problem of magnetostatic flaw detection
    Pechenkov, A. N.
    Shcherbinin, V. E.
    DOKLADY PHYSICS, 2006, 51 (06) : 311 - 314
  • [29] Inverse problem of magnetostatic flaw detection
    A. N. Pechenkov
    V. E. Shcherbinin
    Doklady Physics, 2006, 51 : 311 - 314
  • [30] Systematic regularization of linear inverse solutions of the EEG source localization problem
    Phillips, C
    Rugg, MD
    Friston, KJ
    NEUROIMAGE, 2002, 17 (01) : 287 - 301