Time series predicting of COVID-19 based on deep learning

被引:79
|
作者
Alassafi, Madini O. [1 ]
Jarrah, Mutasem [1 ]
Alotaibi, Reem [1 ]
机构
[1] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia
关键词
Prediction; RNN; LSTM; COVID-19; Time series; LSTM;
D O I
10.1016/j.neucom.2021.10.035
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
COVID-19 was declared a global pandemic by the World Health Organisation (WHO) on 11th March 2020. Many researchers have, in the past, attempted to predict a COVID outbreak and its effect. Some have regarded time-series variables as primary factors which can affect the onset of infectious diseases like influenza and severe acute respiratory syndrome (SARS). In this study, we have used public datasets provided by the European Centre for Disease Prevention and Control for developing a prediction model for the spread of the COVID-19 outbreak to and throughout Malaysia, Morocco and Saudi Arabia. We have made use of certain effective deep learning (DL) models for this purpose. We assessed some specific major features for predicting the trend of the existing COVID-19 outbreak in these three countries. In this study, we also proposed a DL approach that includes recurrent neural network (RNN) and long short-term memory (LSTM) networks for predicting the probable numbers of COVID-19 cases. The LSTM models showed a 98.58% precision accuracy while the RNN models showed a 93.45% precision accuracy. Also, this study compared the number of coronavirus cases and the number of resulting deaths in Malaysia, Morocco and Saudi Arabia. Thereafter, we predicted the number of confirmed COVID-19 cases and deaths for a subsequent seven days. In this study, we presented their predictions using the data that was available up to December 3rd, 2020. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:335 / 344
页数:10
相关论文
共 50 条
  • [31] COVID-19 Time Series Prediction
    de Oliveira, Leonardo Sestrem
    Gruetzmacher, Sarah Beatriz
    Teixeira, Joao Paulo
    INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS / INTERNATIONAL CONFERENCE ON PROJECT MANAGEMENT / INTERNATIONAL CONFERENCE ON HEALTH AND SOCIAL CARE INFORMATION SYSTEMS AND TECHNOLOGIES 2020 (CENTERIS/PROJMAN/HCIST 2020), 2021, 181 : 973 - 980
  • [32] Deep Learning applications for COVID-19
    Shorten, Connor
    Khoshgoftaar, Taghi M.
    Furht, Borko
    JOURNAL OF BIG DATA, 2021, 8 (01)
  • [33] Deep Learning applications for COVID-19
    Connor Shorten
    Taghi M. Khoshgoftaar
    Borko Furht
    Journal of Big Data, 8
  • [34] COVID-19 Diagnosis with Deep Learning
    Reis, Hatice Catal
    INGENIERIA E INVESTIGACION, 2022, 42 (01):
  • [35] Deep learning for COVID-19 detection based on CT images
    Zhao, Wentao
    Jiang, Wei
    Qiu, Xinguo
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [36] Deep learning for COVID-19 detection based on CT images
    Wentao Zhao
    Wei Jiang
    Xinguo Qiu
    Scientific Reports, 11
  • [37] Deep-learning Based Approach to Identify Covid-19
    Feng, Ke
    He, Fengyu
    Steinmann, Jessica
    Demirkiran, Ilteris
    SOUTHEASTCON 2021, 2021, : 278 - 281
  • [38] Deep Learning-Based Forecasting of COVID-19 in India
    Pillai, Punitha Kumaresa
    Durairaj, Devaraj
    Samivel, Kanthammal
    JOURNAL OF TESTING AND EVALUATION, 2022, 50 (01) : 225 - 242
  • [39] Deep Learning for COVID-19 Prediction based on Blood Test
    Yu, Ziyue
    He, Lihua
    Luo, Wuman
    Tse, Rita
    Pau, Giovanni
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS, BIG DATA AND SECURITY (IOTBDS), 2021, : 103 - 111
  • [40] A Framework for Acoustic Detection of COVID-19 based on Deep Learning
    Al-Barakati, Abdullah
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (01): : 449 - 452