Completion of continuity spaces with uniformly vanishing asymmetry

被引:6
|
作者
Chand, Alveen [1 ]
Weiss, Ittay [1 ]
机构
[1] Univ S Pacific, Sch Comp Informat & Math Sci, Suva, Fiji
关键词
Completion; Continuity space; Quantale; Value quantale; Quasi-metric; Generalized metric; Uniform space; Quasi-uniform space; COMPLETENESS;
D O I
10.1016/j.topol.2015.01.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical Cauchy completion of a metric space (by means of Cauchy sequences) as well as the completion of a uniform space (by means of Cauchy filters) are wellknown to rely on the symmetry of the metric space or uniform space in question. For qausi-metric spaces and quasi-uniform spaces various non-equivalent completions exist, often defined on a certain subcategory of spaces that satisfy a key property required for the particular completion to exist. The classical filter completion of a uniform space can be adapted to yield a filter completion of a metric space. We show that this completion by filters generalizes to continuity spaces that satisfy a form of symmetry which we call uniformly vanishing asymmetry. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:130 / 140
页数:11
相关论文
共 50 条
  • [21] COMPLETION OF BORNOLOGICAL SPACES
    HOGBENLEND, H
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (07): : 382 - +
  • [22] Cohomology vanishing in Hilbert spaces
    Kajiwara, J
    Li, XD
    Shon, KH
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2004, 25 (01) : 87 - 96
  • [23] Hypergraphs with vanishing Turan density in uniformly dense hypergraphs
    Reiher, Christian
    Roedl, Vojtech
    Schacht, Mathias
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 97 : 77 - 97
  • [24] Uniformly Convex Metric Spaces
    Kell, Martin
    [J]. ANALYSIS AND GEOMETRY IN METRIC SPACES, 2014, 2 (01): : 359 - 380
  • [25] Vanishing Cystic Air Spaces
    Gomes de Farias, Lucas de Padua
    Nomura, Cesar Higa
    Yamada Sawamura, Marcio Valente
    [J]. RADIOLOGY-CARDIOTHORACIC IMAGING, 2023, 5 (06):
  • [26] COHOMOLOGY VANISHING IN HILBERT SPACES
    J. KAJIWARA LI Xiaodong K. H. SHON Graduate School of Mathematics
    [J]. Chinese Annals of Mathematics, 2004, (01) : 87 - 96
  • [27] VANISHING THEOREMS ON SINGULAR SPACES
    STEENBRINK, JHM
    [J]. ASTERISQUE, 1985, (130) : 330 - 341
  • [28] VANISHING CYCLES OF ANALYTIC SPACES
    TRANG, LD
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (04): : 283 - 285
  • [29] ON UNIFORMLY LOCALLY COMPACT SPACES
    RANDTKE, DJ
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1970, 30 (02) : 420 - &
  • [30] On vanishing theorems for analytic spaces
    Fujino, Osamu
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2024, 100 (04) : 21 - 25