Associative Memristive Memory for Approximate Computing in GPUs

被引:19
|
作者
Ghofrani, Amirali [1 ]
Rahimi, Abbas [2 ]
Lastras-Montano, Miguel A. [1 ]
Benini, Luca [4 ,5 ]
Gupta, Rajesh K. [3 ]
Cheng, Kwang-Ting [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[3] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA
[4] Swiss Fed Inst Technol, Dept Informat Technol & Elect Engn, CH-8092 Zurich, Switzerland
[5] Univ Bologna, Dept Elect Elect & Informat Engn, I-40136 Bologna, Italy
基金
美国国家科学基金会;
关键词
Approximate computing; associative memory; floating point units (FPUs); graphics processing units (GPUs); memristor; ternary content-addressable memory (TCAM); voltage overscaling; ENERGY; TCAM; ARCHITECTURE; STORAGE;
D O I
10.1109/JETCAS.2016.2538618
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Using associative memories to enable computing-with-memory is a promising approach to improve energy efficiency. Associative memories can be tightly coupled with processing elements to restore and later recall function responses for a subset of input values. This approach avoids the actual function execution on the processing element to save on energy. The challenge, however, is to reduce the energy consumption of associative memory modules themselves. Here we address the challenge of designing ultra-low-power associative memories. We use memristive parts for memory implementation and demonstrate the energy saving potential of integrating associative memristive memory (AMM) into graphics processing units (GPUs). To reduce the energy consumption of AMM modules, we leverage approximate computing which benefits from application-level tolerance to errors: We employ voltage overscaling on AMM modules which deliberately relaxes its searching criteria to approximately match stored patterns within a 2 bit Hamming distance of the search pattern. This introduces some errors to the computation that are tolerable for target applications. We further reduce the energy consumption by employing purely resistive crossbar architectures for AMM modules. To evaluate the proposed architecture, we integrate AMM modules with floating point units in an AMD Southern Islands GPU and run four image processing kernels on an AMM-integrated GPU. Our experimental results show that employing AMM modules reduces energy consumption of running these kernels by 23%-45%, compared to a baseline GPU without AMM. The image processing kernels tolerate errors resulting from approximate search operations, maintaining an acceptable image quality, i.e., a PSNR above 30 dB.
引用
收藏
页码:222 / 234
页数:13
相关论文
共 50 条
  • [21] Associative memory realized by a reconfigurable memristive Hopfield neural network
    Hu, S. G.
    Liu, Y.
    Liu, Z.
    Chen, T. P.
    Wang, J. J.
    Yu, Q.
    Deng, L. J.
    Yin, Y.
    Hosaka, Sumio
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [22] A Memristive Neural Network Model With Associative Memory for Modeling Affections
    Ma, Deming
    Wang, Guangyi
    Han, Chunyan
    Shen, Yiran
    Liang, Yan
    [J]. IEEE ACCESS, 2018, 6 : 61614 - 61622
  • [23] Associative memory realized by a reconfigurable memristive Hopfield neural network
    S.G. Hu
    Y. Liu
    Z Liu
    T.P. Chen
    J.J. Wang
    Q. Yu
    L.J. Deng
    Y. Yin
    Sumio Hosaka
    [J]. Nature Communications, 6
  • [24] Spatial and Temporal Probabilistic Inference Using a Memristive Associative Memory
    Taha, Mohammad M. A.
    Chavez, Wesley
    Teuscher, Christof
    [J]. INTERNATIONAL JOURNAL OF UNCONVENTIONAL COMPUTING, 2017, 13 (02) : 97 - 115
  • [25] A novel memristive Hopfield neural network with application in associative memory
    Yang, Jiu
    Wang, Lidan
    Wang, Yan
    Guo, Tengteng
    [J]. NEUROCOMPUTING, 2017, 227 : 142 - 148
  • [26] Toward memristive in-memory computing: principles and applications
    Bao, Han
    Zhou, Houji
    Li, Jiancong
    Pei, Huaizhi
    Tian, Jing
    Yang, Ling
    Ren, Shengguang
    Tong, Shaoqin
    Li, Yi
    He, Yuhui
    Chen, Jia
    Cai, Yimao
    Wu, Huaqiang
    Liu, Qi
    Wan, Qing
    Miao, Xiangshui
    [J]. FRONTIERS OF OPTOELECTRONICS, 2022, 15 (01)
  • [27] Memristive Memory Enhancement by Device Miniaturization for Neuromorphic Computing
    Goossens, Anouk S.
    Ahmadi, Majid
    Gupta, Divyanshu
    Bhaduri, Ishitro
    Kooi, Bart J.
    Banerjee, Tamalika
    [J]. ADVANCED ELECTRONIC MATERIALS, 2023, 9 (04):
  • [28] An Efficient Heterogeneous Memristive XNOR for In-Memory Computing
    Abu Lebdeh, Muath
    Abunahla, Heba
    Mohammad, Baker
    Al-Qutayri, Mahmoud
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2017, 64 (09) : 2427 - 2437
  • [29] Stochastic Computing for Reliable Memristive In-Memory Computation
    Alam, Mohsen Riahi
    Najafi, M. Hassan
    TaheriNejad, Nima
    Imani, Mohsen
    Peng, Lu
    [J]. PROCEEDINGS OF THE GREAT LAKES SYMPOSIUM ON VLSI 2023, GLSVLSI 2023, 2023, : 397 - 401
  • [30] Toward memristive in-memory computing: principles and applications
    Han Bao
    Houji Zhou
    Jiancong Li
    Huaizhi Pei
    Jing Tian
    Ling Yang
    Shengguang Ren
    Shaoqin Tong
    Yi Li
    Yuhui He
    Jia Chen
    Yimao Cai
    Huaqiang Wu
    Qi Liu
    Qing Wan
    Xiangshui Miao
    [J]. Frontiers of Optoelectronics, 2022, 15