Weak L1 norms of random sums

被引:2
|
作者
Hagelstein, PA [1 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
D O I
10.1090/S0002-9939-05-07966-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {g(j)} denote a sequence of measurable functions on R-n, and let ∥•∥(WL1) denote the weak L-1 norm. It is shown that ∥ E(|Σ(N)(j=1)ε(j)g(j)|)∥(WL1) ≲ Σ(N)(j=1)∥ g(j)∥(WL1) where {ε(j)} is a sequence of independent random variables taking on values +1 and -1 with equal probability. Moreover, it is shown that ∥ E(|Σ(N)(j=1)ε(j)g(j)|)∥(WL1) ≲ E(∥Σ(N)(j=1)ε(j)g(j)∥(WL1)) The paper concludes by providing an example indicating that, if ∥ g(1)∥(WL1) = ••• = ∥ g(N)∥(WL1) = 1, then the estimate E(∥Σ(N)(j=1)ε(j)g(j)∥(WL1)) ≲ N log N is the best possible.
引用
收藏
页码:2327 / 2334
页数:8
相关论文
共 50 条