Weak L1 norms of random sums

被引:2
|
作者
Hagelstein, PA [1 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
D O I
10.1090/S0002-9939-05-07966-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {g(j)} denote a sequence of measurable functions on R-n, and let ∥•∥(WL1) denote the weak L-1 norm. It is shown that ∥ E(|Σ(N)(j=1)ε(j)g(j)|)∥(WL1) ≲ Σ(N)(j=1)∥ g(j)∥(WL1) where {ε(j)} is a sequence of independent random variables taking on values +1 and -1 with equal probability. Moreover, it is shown that ∥ E(|Σ(N)(j=1)ε(j)g(j)|)∥(WL1) ≲ E(∥Σ(N)(j=1)ε(j)g(j)∥(WL1)) The paper concludes by providing an example indicating that, if ∥ g(1)∥(WL1) = ••• = ∥ g(N)∥(WL1) = 1, then the estimate E(∥Σ(N)(j=1)ε(j)g(j)∥(WL1)) ≲ N log N is the best possible.
引用
收藏
页码:2327 / 2334
页数:8
相关论文
共 50 条
  • [1] L1 bounds for asymptotic normality of random sums of independent random variables
    Jonas Kazys Sunklodas
    Lithuanian Mathematical Journal, 2013, 53 : 438 - 447
  • [2] THE L1 STRUCTURE OF WEAK L1
    KUPKA, J
    PECK, NT
    MATHEMATISCHE ANNALEN, 1984, 269 (02) : 235 - 262
  • [3] The norm of sums of independent noncommutative random variables in LP(l1)
    Junge, M
    Parcet, J
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 221 (02) : 366 - 406
  • [4] TENSOR NORMS ON L1(N) BY L1(N)
    COHEN, JS
    STEPHENS, AB
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A350 - A350
  • [5] Weak embeddings of L1
    Mykhaylyuk, Volodymyr
    Popov, Mikhail
    HOUSTON JOURNAL OF MATHEMATICS, 2006, 32 (04): : 1139 - 1152
  • [6] L1 CONVERGENCE OF CERTAIN COSINE SUMS
    GARRETT, JW
    STANOJEVIC, CV
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 54 (JAN) : 101 - 105
  • [7] L1 CONVERGENCE OF CERTAIN COSINE SUMS
    GARRETT, JW
    STANOJEVIC, CV
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 82 (01) : 129 - 130
  • [8] Formulae for the L0, L1 and L∞ norms
    Williams, HP
    Munford, AG
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1999, 63 (02) : 121 - 141
  • [9] THE CANONICAL SEMINORM ON WEAK L1
    CWIKEL, M
    FEFFERMAN, C
    STUDIA MATHEMATICA, 1984, 78 (03) : 275 - 278
  • [10] Multilinear operators and weighted l1 norms
    Department of Mathematics, University of California, Los Angeles, CA 90024, United States
    不详
    Linear Algebra Its Appl, 1-3 (1-10):