Performance Evaluation of Constraints in Graph-Based Semi-supervised Clustering

被引:0
|
作者
Yoshida, Tetsuya [1 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
来源
ACTIVE MEDIA TECHNOLOGY | 2010年 / 6335卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Semi-supervised learning has been attracting much interest to cope with vast amount of data. When similarities among instances are specified, by connecting each pair of instances with an edge, the entire data can be represented as an edge-weighted graph. Based on the graph representation, we have proposed a graph-based approach for semi-supervised clustering, which modifies the graph structure by contraction in graph theory and graph Laplacian in spectral graph theory. In this paper we conduct extensive experiments over various document datasets and report its performance evaluation, with respect to the type of constraints as well as the number of constraints. We also compare it with other state of the art methods in terms of accuracy and running time, and the results are encouraging. Especially, our approach can leverage small amount of pairwise constraints to increase the performance.
引用
收藏
页码:138 / 149
页数:12
相关论文
共 50 条
  • [21] Graph-based semi-supervised learning with multiple labels
    Zha, Zheng-Jun
    Mei, Tao
    Wang, Jingdong
    Wang, Zengfu
    Hua, Xian-Sheng
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2009, 20 (02) : 97 - 103
  • [22] Graph-Based Semi-Supervised Learning: A Comprehensive Review
    Song, Zixing
    Yang, Xiangli
    Xu, Zenglin
    King, Irwin
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 8174 - 8194
  • [23] Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses
    Zhou, Fan
    Li, Tengfei
    Zhou, Haibo
    Ye, Jieping
    Zhu, Hongtu
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [24] Semi-supervised graph-based hyperspectral image classification
    Camps-Valls, Gustavo
    Bandos, Tatyana V.
    Zhou, Dengyong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10): : 3044 - 3054
  • [25] Graph-Based Semi-Supervised Learning as a Generative Model
    He, Jingrui
    Carbonell, Jaime
    Liu, Yan
    [J]. 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2492 - 2497
  • [26] Robust and Flexible Graph-based Semi-supervised Embedding
    Dornaika, F.
    El Traboulsi, Y.
    Zhu, R.
    [J]. 2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 465 - 470
  • [27] Coded Distributed Graph-Based Semi-Supervised Learning
    Du, Ying
    Tan, Siqi
    Han, Kaifeng
    Jiang, Jiamo
    Wang, Zhiqin
    Chen, Li
    [J]. 2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 367 - 372
  • [28] Graph-based Semi-supervised Learning for Text Classification
    Widmann, Natalie
    Verberne, Suzan
    [J]. ICTIR'17: PROCEEDINGS OF THE 2017 ACM SIGIR INTERNATIONAL CONFERENCE THEORY OF INFORMATION RETRIEVAL, 2017, : 59 - 66
  • [29] Graph-based Semi-Supervised Regression and Its Extensions
    Guo, Xinlu
    Uehara, Kuniaki
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2015, 6 (06) : 260 - 269
  • [30] Learning Flexible Graph-Based Semi-Supervised Embedding
    Dornaika, Fadi
    El Traboulsi, Youssof
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (01) : 206 - 218