High Entropy van der Waals Materials

被引:15
|
作者
Ying, Tianping [1 ,2 ]
Yu, Tongxu [3 ]
Qi, Yanpeng [4 ]
Chen, Xiaolong [1 ]
Hosono, Hideo [2 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Tokyo Inst Technol, Mat Res Ctr Element Strategy, Yokohama, Kanagawa 2268503, Japan
[3] Gusu Lab Mat, Suzhou 215123, Jiangsu, Peoples R China
[4] ShanghaiTech Univ, Sch Phys Sci & Technol, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China
关键词
2D materials; high entropy materials; van der Waals materials; superconductors; SPIN-GLASSES; MAGNETIC-PROPERTIES; ALLOYS; ORDER;
D O I
10.1002/advs.202203219
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
By breaking the restrictions on traditional alloying strategy, the high entropy concept has promoted the exploration of the central area of phase space, thus broadening the horizon of alloy exploitation. This review highlights the marriage of the high entropy concept and van der Waals systems to form a new family of materials category, namely the high entropy van der Waals materials (HEX, HE = high entropy, X = anion clusters) and describes the current issues and next challenges. The design strategy for HEX has integrated the local feature (e.g., composition, spin, and valence states) of structural units in high entropy materials and the holistic degrees of freedom (e.g., stacking, twisting, and intercalating species) in van der Waals materials, and is successfully used for the discovery of high entropy dichalcogenides, phosphorus tri-chalcogenides, halogens, and MXene. The rich combination and random distribution of the multiple metallic constituents on the nearly regular 2D lattice give rise to a flexible platform to study the correlation features behind a range of selected physical properties, e.g., superconductivity, magnetism, and metal-insulator transition. The deliberate design of structural units and their stacking configuration can also create novel catalysts to enhance their performance in a bunch of chemical reactions.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Dynamics of optical vortices in van der Waals materials
    Kurman, Yaniv
    Dahan, Raphael
    Shenfux, Hanan Herzig
    Rosolen, Gilles
    Janzen, Eli
    Edgar, James H.
    Koppens, Frank H. L.
    Kaminer, Ido
    [J]. OPTICA, 2023, 10 (05): : 612 - 618
  • [32] Nanophotonic biosensors harnessing van der Waals materials
    Sang-Hyun Oh
    Hatice Altug
    Xiaojia Jin
    Tony Low
    Steven J. Koester
    Aleksandar P. Ivanov
    Joshua B. Edel
    Phaedon Avouris
    Michael S. Strano
    [J]. Nature Communications, 12
  • [33] Phonon engineering in graphene and van der Waals materials
    Balandin, Alexander A.
    [J]. MRS BULLETIN, 2014, 39 (09) : 817 - 823
  • [34] Strategy for transferring van der Waals materials and heterostructures
    Fan, Sidi
    Li, Xianxu
    Mondal, Ashok
    Wang, Wenjie
    Lee, Young Hee
    [J]. 2D MATERIALS, 2024, 11 (03)
  • [35] Nanophotonic biosensors harnessing van der Waals materials
    Oh, Sang-Hyun
    Altug, Hatice
    Jin, Xiaojia
    Low, Tony
    Koester, Steven J.
    Ivanov, Aleksandar P.
    Edel, Joshua B.
    Avouris, Phaedon
    Strano, Michael S.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [36] Growth of van der Waals magnetic semiconductor materials
    Dumcenco, Dumitru
    Giannini, Enrico
    [J]. JOURNAL OF CRYSTAL GROWTH, 2020, 548
  • [37] Two-dimensional van der Waals materials
    Ajayan, Pulickel
    Kim, Philip
    Banerjee, Kaustav
    [J]. PHYSICS TODAY, 2016, 69 (09) : 39 - 44
  • [38] Phonon engineering in graphene and van der Waals materials
    Alexander A. Balandin
    [J]. MRS Bulletin, 2014, 39 : 817 - 823
  • [39] Functionalizing Van der Waals materials by shaping them
    Deep Jariwala
    [J]. Light: Science & Applications, 11
  • [40] Van Der Waals Materials for Subdiffractional Light Guidance
    Ermolaev, Georgy
    Grudinin, Dmitriy
    Voronin, Kirill
    Vyshnevyy, Andrey
    Arsenin, Aleksey
    Volkov, Valentyn
    [J]. PHOTONICS, 2022, 9 (10)