Using phylogenetic relationships to improve the inference of transcriptional regulatory networks

被引:1
|
作者
Zhang, Xiuwei [1 ]
Zaheri, Maryam [1 ]
Moret, Bernard M. E. [1 ]
机构
[1] EPFL INS LCBB, Swiss Fed Inst Technol, Lab Computat Biol & Bioinformat, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1109/BMEI.2008.247
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Inferring transcriptional regulatory networks from gene-expression data remains a challenging problem, in part because of the noisy nature of the data and the lack of strong network models. Time-series expression data have shown promise and recent work by Babu on the evolution of regulatory networks in E. coli and S. cerevisiae opened another avenue of investigation. In this paper we take the evolutionary approach one step further. We conjecture that established phylogenetic relationships among a group of related organisms can be used to improve the inference of regulatory networks for these organisms from expression data gathered under similar conditions. We develop an inference algorithm to take advantage of such information and present the results of simulations (including various tests to exclude confounding factors) that clearly show the added value of the phylogenetic information. Our algorithm and results offer support for our conjecture and indicate that gene-expression studies under identical conditions across a range of related organisms could yield significantly more accurate regulatory networks than single-organism studies.
引用
收藏
页码:186 / 193
页数:8
相关论文
共 50 条
  • [1] Boosting the Performance of Inference Algorithms for Transcriptional Regulatory Networks Using a Phylogenetic Approach
    Zhang, Xiuwei
    Moret, Bernard M. E.
    [J]. ALGORITHMS IN BIOINFORMATICS, WABI 2008, 2008, 5251 : 245 - +
  • [2] Inference of transcriptional regulatory networks
    Gidrol, Xavier
    Wu, Ning
    Frouin, Vincent
    Debily, Marie-Anne
    [J]. M S-MEDECINE SCIENCES, 2008, 24 (6-7): : 629 - 634
  • [3] Inference of transcriptional regulatory networks using CAGE transcriptome dataset of Mus musculus
    Taki, Kohei
    Takenaka, Yoichi
    Matsuda, Hideo
    [J]. WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2006, VOL 14, PTS 1-6, 2007, 14 : 187 - 190
  • [4] Identification of putative transcriptional regulatory networks in Entamoeba histolytica using Bayesian inference
    Hackney, Jason A.
    Ehrenkaufer, Gretchen M.
    Singh, Upinder
    [J]. NUCLEIC ACIDS RESEARCH, 2007, 35 (07) : 2141 - 2152
  • [5] A causal inference approach for constructing transcriptional regulatory networks
    Xing, B
    van der Laan, MJ
    [J]. BIOINFORMATICS, 2005, 21 (21) : 4007 - 4013
  • [6] Using Genotype Abundance to Improve Phylogenetic Inference
    DeWitt, William S., III
    Mesin, Luka
    Victora, Gabriel D.
    Minin, Vladimir N.
    Matsen, Frederick A.
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2018, 35 (05) : 1253 - 1265
  • [7] Phylogenetic relationships between Arabidopsis and sugarcane bZlP transcriptional regulatory factors
    Vincentz, M
    Schlögl, PS
    Corrêa, LGG
    Kühne, F
    Leite, A
    [J]. GENETICS AND MOLECULAR BIOLOGY, 2001, 24 (1-4) : 55 - 60
  • [8] Information-Theoretic Inference of Large Transcriptional Regulatory Networks
    Meyer, Patrick E.
    Kontos, Kevin
    Lafitte, Frederic
    Bontempi, Gianluca
    [J]. EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY, 2007, (01)
  • [9] Simultaneous inference and clustering of transcriptional dynamics in gene regulatory networks
    Asif, H. M. Shahzad
    Sanguinetti, Guido
    [J]. STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2013, 12 (05) : 545 - 557
  • [10] BAYESIAN SPARSE FACTOR MODEL FOR TRANSCRIPTIONAL REGULATORY NETWORKS INFERENCE
    Sanchez-Castillo, M.
    Tienda-Luna, I.
    Blanco, D.
    Carrion-Perez, M. C.
    Huang, Y.
    [J]. 2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2013,