Simultaneous inference and clustering of transcriptional dynamics in gene regulatory networks

被引:2
|
作者
Asif, H. M. Shahzad [1 ,2 ]
Sanguinetti, Guido [2 ]
机构
[1] Univ Engn & Technol, Dept Comp Sci & Engn, Lahore, Pakistan
[2] Univ Edinburgh, Sch Informat, Edinburgh EH8 9AB, Midlothian, Scotland
关键词
Bayesian Inference; computational Biology; dynamical models; HIDDEN MARKOV-MODELS; SACCHAROMYCES-CEREVISIAE; PROBABILISTIC INFERENCE; EXPRESSION DATA;
D O I
10.1515/sagmb-2012-0010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We present a novel method for simultaneous inference and nonparametric clustering of transcriptional dynamics from gene expression data. The proposed method uses gene expression data to infer time-varying TF profiles and cluster these temporal profiles according to the dynamics they exhibit. We use the latent structure of factorial hidden Markov model to model the transcription factor profiles as Markov chains and cluster these profiles using nonparametric mixture modeling. An efficient Gibbs sampling scheme is proposed for inference of latent variables and grouping of transcriptional dynamics into a priori unknown number of clusters. We test our model on simulated data and analyse its performance on two expression datasets; S. cerevisiae cell cycle data and E. coli oxygen starvation response data. Our results show the applicability of the method for genome wide analysis of expression data.
引用
收藏
页码:545 / 557
页数:13
相关论文
共 50 条
  • [1] Inference of transcriptional regulatory networks
    Gidrol, Xavier
    Wu, Ning
    Frouin, Vincent
    Debily, Marie-Anne
    [J]. M S-MEDECINE SCIENCES, 2008, 24 (6-7): : 629 - 634
  • [2] Modeling the dynamics of transcriptional gene regulatory networks for animal development
    de-Leon, Smadar Ben-Tabou
    Davidson, Eric H.
    [J]. DEVELOPMENTAL BIOLOGY, 2009, 325 (02) : 317 - 328
  • [3] Harissa: Stochastic Simulation and Inference of Gene Regulatory Networks Based on Transcriptional Bursting
    Herbach, Ulysse
    [J]. COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY, CMSB 2023, 2023, 14137 : 97 - 105
  • [4] Inference on the structure of gene regulatory networks
    Wang, Yue
    Wang, Zikun
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2022, 539
  • [5] A causal inference approach for constructing transcriptional regulatory networks
    Xing, B
    van der Laan, MJ
    [J]. BIOINFORMATICS, 2005, 21 (21) : 4007 - 4013
  • [6] Statistical inference for simultaneous clustering of gene expression data
    Pollard, KS
    van der Laan, MJ
    [J]. MATHEMATICAL BIOSCIENCES, 2002, 176 (01) : 99 - 121
  • [7] Statistical inference for simultaneous clustering of gene expression data
    Pollard, KS
    van der Laan, MJ
    [J]. NONLINEAR ESTIMATION AND CLASSIFICATION, 2003, 171 : 307 - 321
  • [8] Simultaneous Execution Method of Gene Clustering and Network Inference
    Kimura, Shuhei
    Tokuhisa, Masato
    Okada-Hatakeyama, Mariko
    [J]. 2016 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2016,
  • [9] Dynamics of gene expression and the regulatory inference problem
    Berg, J.
    [J]. EPL, 2008, 82 (02)
  • [10] Information-Theoretic Inference of Large Transcriptional Regulatory Networks
    Meyer, Patrick E.
    Kontos, Kevin
    Lafitte, Frederic
    Bontempi, Gianluca
    [J]. EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY, 2007, (01)