Organic building blocks at inorganic nanomaterial interfaces

被引:18
|
作者
Huang, Yunping [1 ]
Cohen, Theodore A. [2 ]
Sperry, Breena M. [1 ]
Larson, Helen [3 ]
Nguyen, Hao A. [3 ]
Homer, Micaela K. [3 ]
Dou, Florence Y. [3 ]
Jacoby, Laura M. [3 ]
Cossairt, Brandi M. [3 ]
Gamelin, Daniel R. [3 ]
Luscombe, Christine K. [1 ,2 ,3 ,4 ]
机构
[1] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
[2] Univ Washington, Mol Engn & Sci Inst, Seattle, WA 98195 USA
[3] Univ Washington, Dept Chem, Seattle, WA 98195 USA
[4] Okinawa Inst Sci & Technol Grad Univ, PI Conjugated Polymers Unit, Onna, Okinawa, Japan
基金
美国国家科学基金会;
关键词
HALIDE PEROVSKITE NANOCRYSTALS; LIGHT-EMITTING-DIODES; PHOTOLUMINESCENCE QUANTUM YIELD; DEPENDENT ELECTRON-TRANSFER; METAL-OXIDE NANOCRYSTALS; SINGLE-PHOTON EMISSION; SOLAR-CELLS; COLLOIDAL NANOCRYSTALS; LIGAND-EXCHANGE; SURFACE-CHEMISTRY;
D O I
10.1039/d1mh01294k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This tutorial review presents our perspective on designing organic molecules for the functionalization of inorganic nanomaterial surfaces, through the model of an "anchor-functionality" paradigm. This "anchor-functionality" paradigm is a streamlined design strategy developed from a comprehensive range of materials (e.g., lead halide perovskites, II-VI semiconductors, III-V semiconductors, metal oxides, diamonds, carbon dots, silicon, etc.) and applications (e.g., light-emitting diodes, photovoltaics, lasers, photonic cavities, photocatalysis, fluorescence imaging, photo dynamic therapy, drug delivery, etc.). The structure of this organic interface modifier comprises two key components: anchor groups binding to inorganic surfaces and functional groups that optimize their performance in specific applications. To help readers better understand and utilize this approach, the roles of different anchor groups and different functional groups are discussed and explained through their interactions with inorganic materials and external environments.
引用
收藏
页码:61 / 87
页数:27
相关论文
共 50 条
  • [31] Inorganic nanomaterial applications in scratch resistant organic coatings
    Fernando, Raymond H.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [32] Robust building blocks for inorganic crystal engineering
    Aakeröy, CB
    Desper, J
    Levin, B
    Valdés-Martínez, J
    INORGANICA CHIMICA ACTA, 2006, 359 (04) : 1255 - 1262
  • [33] Development of Composite Inorganic Building Blocks for MOFs
    Zheng, Shou-Tian
    Wu, Tao
    Chou, Chengtsung
    Fuhr, Addis
    Feng, Pingyun
    Bu, Xianhui
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (10) : 4517 - 4520
  • [34] Supramolecular Materials from Inorganic Building Blocks
    Katsuhiko Ariga
    Qingmin Ji
    Jonathan P. Hill
    Ajayan Vinu
    Journal of Inorganic and Organometallic Polymers and Materials, 2010, 20 : 1 - 9
  • [35] ORGANIC PHOTONICS Blending organic building blocks
    Sayago, J.
    Rosei, F.
    Santato, C.
    NATURE PHOTONICS, 2012, 6 (10) : 639 - 640
  • [36] CHEMISTRY AT ORGANIC-INORGANIC INTERFACES
    BERTOLUCCI, M
    JANTZEF, F
    CHAMBERL.DL
    ADVANCES IN CHEMISTRY SERIES, 1968, (87): : 124 - +
  • [37] Gallium-sulfide supertetrahedral clusters as building blocks of covalent organic-inorganic networks
    Vaqueiro, Paz
    Romero, M. Lucia
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (30) : 9630 - +
  • [39] Metal Oxoclusters as Molecular Building Blocks for the Development of Nanostructured Inorganic–Organic Hybrid Thin Films
    Silvia Gross
    Andrea Zattin
    Vito Di Noto
    Sandra Lavina
    Monatshefte für Chemie / Chemical Monthly, 2006, 137 : 583 - 593
  • [40] The nano building blocks approach for modification of surface properties of nanocomposite inorganic-organic films
    Pagacova, Jana
    Papucova, Iveta
    Plsko, Alfonz
    Faturikova, Katarina
    JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 2022, 19 (04) : 1139 - 1147