A posteriori error estimate for the Stokes-Darcy system

被引:21
|
作者
Cui, Ming [2 ,3 ]
Yan, Ningning [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, LSEC, Beijing 100190, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[3] Chinese Acad Sci, Inst Atmospher Phys, LASG, Beijing 100029, Peoples R China
关键词
a posteriori error analysis; Stokes and Darcy equations; Hood-Taylor element; FINITE-ELEMENT METHOD; COUPLING FLUID-FLOW;
D O I
10.1002/mma.1422
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the a posteriori error estimates for finite element approximations of the Stokes-Darcy system. The finite element spaces adopted are the Hood-Taylor element for the velocity and the pressure in fluid region and conforming piecewise quadratic element for the pressure in porous media region. The a posteriori error estimate is based on a suitable evaluation on the residual of the finite element solution. It is proven that the a posteriori error estimate provided in this paper is both reliable and efficient. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:1050 / 1064
页数:15
相关论文
共 50 条
  • [31] Two-grid domain decomposition methods for the coupled Stokes-Darcy system
    Sun, Yizhong
    Shi, Feng
    Zheng, Haibiao
    Li, Heng
    Wang, Fan
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 385
  • [32] Asymptotic analysis of the differences between the Stokes-Darcy system with different interface conditions and the Stokes-Brinkman system
    Chen, Nan
    Gunzburger, Max
    Wang, Xiaoming
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (02) : 658 - 676
  • [33] FIRST-ORDER SYSTEM LEAST SQUARES FOR COUPLED STOKES-DARCY FLOW
    Muenzenmaier, Steffen
    Starke, Gerhard
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (01) : 387 - 404
  • [34] A Decoupled Preconditioning Technique for a Mixed Stokes-Darcy Model
    Marquez, Antonio
    Meddahi, Salim
    Sayas, Francisco-Javier
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2013, 57 (01) : 174 - 192
  • [35] A FULLY COMPUTABLE A POSTERIORI ERROR ESTIMATE FOR THE STOKES EQUATIONS ON POLYTOPAL MESHES
    Bao, Feng
    Mu, Lin
    Wang, Jin
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (01) : 458 - 477
  • [36] AN A POSTERIORI ERROR ESTIMATE FOR THE STOKES-BRINKMAN PROBLEM IN A POLYGONAL DOMAIN
    Burda, Pavel
    Hasal, Martin
    [J]. Programs and Algorithms of Numerical Mathematics 17, 2015, : 32 - 40
  • [37] A POSTERIORI ERROR ESTIMATE FOR STABILIZED FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS
    Wang, Junping
    Wang, Yanqiu
    Ye, Xiu
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2012, 9 (01) : 1 - 16
  • [38] ROBUST MONOLITHIC SOLVERS FOR THE STOKES-DARCY PROBLEM WITH THE DARCY EQUATION IN PRIMAL FORM
    Boon, Wietse M.
    Koch, Timo
    Kuchta, Miroslav
    Mardal, Kent-Andre
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (04): : B1148 - B1174
  • [39] Domain decomposition for Stokes-Darcy flows with curved interfaces
    Song, Pu
    Wang, Changqing
    Yotov, Ivan
    [J]. 2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 1077 - 1086
  • [40] Long time stability of four methods for splitting the evolutionary Stokes-Darcy problem into Stokes and Darcy subproblems
    Layton, William
    Hoang Tran
    Xiong, Xin
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (13) : 3198 - 3217