Complete Chloroplast Genomes of Chlorophytum comosum and Chlorophytum gallabatense: Genome Structures, Comparative and Phylogenetic Analysis

被引:36
|
作者
Munyao, Jacinta N. [1 ,2 ,3 ]
Dong, Xiang [1 ,2 ,3 ]
Yang, Jia-Xin [1 ,2 ]
Mbandi, Elijah M. [1 ,2 ,3 ]
Wanga, Vincent O. [1 ,2 ,3 ]
Oulo, Millicent A. [1 ,2 ,3 ]
Saina, Josphat K. [1 ,2 ,3 ]
Musili, Paul M. [4 ]
Hu, Guang-Wan [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Plant Germplasm Enhancement & Special, Wuhan Bot Garden, Wuhan 430074, Peoples R China
[2] Chinese Acad Sci, Sino Africa Joint Res Ctr, Wuhan 430074, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Natl Museums Kenya, East Africa Herbarium, POB 45166 00100, Nairobi, Kenya
来源
PLANTS-BASEL | 2020年 / 9卷 / 03期
基金
中国国家自然科学基金;
关键词
C; comosum; gallabatense; chloroplast genome; phylogenetic analysis; SYNONYMOUS CODON USAGE; PLANT MITOCHONDRIAL; SEQUENCE; GENES; EXPRESSION; DIVERSIFICATION; ANTHERICACEAE; ORGANIZATION; ANNOTATION; EVOLUTION;
D O I
10.3390/plants9030296
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The genus Chlorophytum includes many economically important species well-known for medicinal, ornamental, and horticultural values. However, to date, few molecular genomic resources have been reported for this genus. Therefore, there is limited knowledge of phylogenetic studies, and the available chloroplast (cp) genome of Chlorophytum (C. rhizopendulum) does not provide enough information on this genus. In this study, we present genomic resources for C. comosum and C. gallabatense, which had lengths of 154,248 and 154,154 base pairs (bp), respectively. They had a pair of inverted repeats (IRa and IRb) of 26,114 and 26,254 bp each in size, separating the large single-copy (LSC) region of 84,004 and 83,686 bp from the small single-copy (SSC) region of 18,016 and 17,960 bp in C. comosum and C. gallabatense, respectively. There were 112 distinct genes in each cp genome, which were comprised of 78 protein-coding genes, 30 tRNA genes, and four rRNA genes. The comparative analysis with five other selected species displayed a generally high level of sequence resemblance in structural organization, gene content, and arrangement. Additionally, the phylogenetic analysis confirmed the previous phylogeny and produced a phylogenetic tree with similar topology. It showed that the Chlorophytum species (C. comosum, C. gallabatense and C. rhizopendulum) were clustered together in the same clade with a closer relationship than other plants to the Anthericum ramosum. This research, therefore, presents valuable records for further molecular evolutionary and phylogenetic studies which help to fill the gap in genomic resources and resolve the taxonomic complexes of the genus.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Initial Complete Chloroplast Genomes of Alchemilla (Rosaceae): Comparative Analysis and Phylogenetic Relationships
    Rono, Peninah Cheptoo
    Dong, Xiang
    Yang, Jia-Xin
    Mutie, Fredrick Munyao
    Oulo, Millicent A.
    Malombe, Itambo
    Kirika, Paul M.
    Hu, Guang-Wan
    Wang, Qing-Feng
    [J]. FRONTIERS IN GENETICS, 2020, 11
  • [32] Comparative and Phylogenetic Analysis of the Complete Chloroplast Genomes of 19 Species in Rosaceae Family
    Mahai, Riwa
    Liu, Rongpeng
    Du, Xiaolang
    Mu, Zejing
    Wang, Xiaoyun
    Yuan, Jun
    [J]. PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2024, 93 (06) : 1203 - 1219
  • [33] Complete chloroplast genomes of Zingiber montanum and Zingiber zerumbet: Genome structure, comparative and phylogenetic analyses
    Li, Dong-Mei
    Ye, Yuan-Jun
    Xu, Ye-Chun
    Liu, Jin-Mei
    Zhu, Gen-Fa
    [J]. PLOS ONE, 2020, 15 (07):
  • [34] Comparative chloroplast genomes and phylogenetic analysis of Aquilegia
    Zhang, Wei
    Wang, Huaying
    Dong, Jianhua
    Zhang, Tengjiao
    Xiao, Hongxing
    [J]. APPLICATIONS IN PLANT SCIENCES, 2021, 9 (03):
  • [35] Complete chloroplast genomes of Impatiens cyanantha and Impatiens monticola: Insights into genome structures, mutational hotspots, comparative and phylogenetic analysis with its congeneric species
    Luo, Chao
    Li, Yang
    Budhathoki, Roshani
    Shi, Jiyuan
    Yer, Huseyin
    Li, Xinyi
    Yan, Bo
    Wang, Qiong
    Wen, Yonghui
    Huang, Meijuan
    Huang, Haiquan
    [J]. PLOS ONE, 2021, 16 (04):
  • [36] Comparative complete chloroplast genome of geum japonicum: evolution and phylogenetic analysis
    Xie, Junbo
    Miao, Yujing
    Zhang, Xinke
    Zhang, Guoshuai
    Guo, Baolin
    Luo, Guangming
    Huang, Linfang
    [J]. JOURNAL OF PLANT RESEARCH, 2024, 137 (01) : 37 - 48
  • [37] Comparative complete chloroplast genome of Geum japonicum: evolution and phylogenetic analysis
    Junbo Xie
    Yujing Miao
    Xinke Zhang
    Guoshuai Zhang
    Baolin Guo
    Guangming Luo
    Linfang Huang
    [J]. Journal of Plant Research, 2024, 137 : 37 - 48
  • [38] Complete chloroplast genome sequence of Camellia rhytidophylla, comparative and phylogenetic analysis
    Liu, Xiao-Fei
    Sun, Ying-Bo
    Huang, Li-Li
    Xu, Ye-Chun
    Zhao, Chao-Yi
    Yu, Bo
    [J]. MITOCHONDRIAL DNA PART B-RESOURCES, 2021, 6 (01): : 161 - 163
  • [39] Comparative and phylogenetic analysis of the complete chloroplast genome sequences of Allium mongolicum
    Yanan Jin
    Ting Zhang
    Binke Liu
    Chengzhong Zheng
    Hongyan Huo
    Jixing Zhang
    [J]. Scientific Reports, 12
  • [40] Comparative and phylogenetic analyses of eleven complete chloroplast genomes of Dipterocarpoideae
    Yang Yu
    Yuwei Han
    Yingmei Peng
    Zunzhe Tian
    Peng Zeng
    Hang Zong
    Tinggan Zhou
    Jing Cai
    [J]. Chinese Medicine, 16