A hybrid glowworm swarm optimization algorithm to solve constrained multimodal functions optimization

被引:14
|
作者
Zhou, Yongquan [1 ,2 ]
Zhou, Guo [3 ]
Zhang, Junli [1 ]
机构
[1] Guangxi Univ Nationalities, Coll Informat Sci & Engn, Nanning, Peoples R China
[2] Guangxi Key Lab Hybrid Computat & IC Design Anal, Nanning, Peoples R China
[3] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
differential evolution; artificial fish swarm; glowworm swarm optimization; multimodal function optimization; hybrid optimization algorithm; 68W20; 68T20; DIFFERENTIAL EVOLUTION;
D O I
10.1080/02331934.2013.793329
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, a novel hybrid glowworm swarm optimization (HGSO) algorithm is proposed. The HGSO algorithm embeds predatory behaviour of artificial fish swarm algorithm (AFSA) into glowworm swarm optimization (GSO) algorithm and combines the GSO with differential evolution on the basis of a two-population co-evolution mechanism. In addition, to overcome the premature convergence, the local search strategy based on simulated annealing is applied to make the search of GSO approach the true optimum solution gradually. Finally, several benchmark functions show that HGSO has faster convergence efficiency and higher computational precision, and is more effective for solving constrained multi-modal function optimization problems.
引用
收藏
页码:1057 / 1080
页数:24
相关论文
共 50 条
  • [31] A Scalable MapReduce-enabled Glowworm Swarm Optimization Approach for High Dimensional Multimodal Functions
    Aljarah, Ibrahim
    Ludwig, Simone A.
    INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2016, 7 (01) : 32 - 54
  • [32] A Hybrid Model of Particle Swarm Optimization and Continuous Ant Colony Optimization for Multimodal Functions Optimization
    Abadi, Moein Fazeli Hassan
    Rezaei, Hassan
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2015, 15 (02): : 108 - 119
  • [33] A Hybrid of Particle Swarm Optimization and Local Search for Multimodal Functions
    Qin, Jin
    Yin, Yixin
    Ban, Xiaojuan
    ADVANCES IN SWARM INTELLIGENCE, PT 1, PROCEEDINGS, 2010, 6145 : 589 - 596
  • [34] A composite particle swarm algorithm for global optimization of multimodal functions
    Guan-zheng Tan
    Kun Bao
    Richard Maina Rimiru
    Journal of Central South University, 2014, 21 : 1871 - 1880
  • [35] A composite particle swarm algorithm for global optimization of multimodal functions
    谭冠政
    鲍琨
    Richard Maina Rimiru
    Journal of Central South University, 2014, 21 (05) : 1871 - 1880
  • [36] A composite particle swarm algorithm for global optimization of multimodal functions
    Tan Guan-zheng
    Bao Kun
    Rimiru, Richard Maina
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2014, 21 (05) : 1871 - 1880
  • [37] An artificial glowworm swarm optimization algorithm based on Powell local optimization method
    Zhang, Jun-Li
    Zhou, Yong-Quan
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2011, 24 (05): : 680 - 684
  • [38] An Enhanced Hybrid Glowworm Swarm Optimization Algorithm for Traffic-Aware Vehicular Networks
    Upadhyay, Pratima
    Marriboina, Venkatadri
    Kumar, Shiv
    Kumar, Sunil
    Shah, Mohd Asif
    IEEE ACCESS, 2022, 10 : 110136 - 110148
  • [39] Glowworm swarm optimization algorithm for solving multi-objective optimization problem
    He Deng-xu
    Liu Gui-qing
    Zhu Hua-zheng
    2013 9TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2013, : 11 - 15
  • [40] The application of hybrid fish swarm algorithm for constrained nonlinear optimization
    Liu, Zhijun
    Gao, Yakui
    Zhang, Weiguo
    Hou, Mei
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2014, 46 (09): : 55 - 60