THE Lp-ALEKSANDROV PROBLEM FOR Lp-INTEGRAL CURVATURE

被引:3
|
作者
Huang, Yong [1 ]
Lutwak, Erwin [2 ]
Yang, Deane [2 ]
Zhang, Gaoyong [2 ]
机构
[1] Hunan Univ, Inst Math, Changsha 410082, Hunan, Peoples R China
[2] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
关键词
Curvature measure; surface area measure; integral curvature; L-p-integral curvature; Minkowski problem; Aleksandrov problem; L-p-Minkowski problem; L-p-Aleksandrov problem; MINKOWSKI PROBLEM; SYMMETRIC-SOLUTIONS; GAUSS CURVATURE; HYPERSURFACES; CLASSIFICATION; REGULARITY; EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that within the L-p-Brunn-Minkowski theory that Aleksandrov's integral curvature has a natural L-p extension, for all real p. This raises the question of finding necessary and sufficient conditions on a given measure in order for it to be the L-p-integral curvature of a convex body. This problem is solved for positive p and is answered for negative p provided the given measure is even.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 50 条
  • [21] LP ESTIMATES FOR INTEGRAL TRANSFORMS
    WALSH, T
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 155 (01) : 195 - &
  • [22] ON THE FRACTIONAL INTEGRAL OF WEYL IN LP
    MARTINEZ, C
    MARTINEZ, MD
    SANZ, M
    MATHEMATISCHE ZEITSCHRIFT, 1994, 215 (02) : 209 - 221
  • [23] The Lp-curvature images of convex bodies and Lp-projection bodies
    Songjun Lv
    Gangsong Leng
    Proceedings Mathematical Sciences, 2008, 118 : 413 - 424
  • [24] The Lp-curvature images of convex bodies and Lp-projection bodies
    Lv, Songjun
    Leng, Gangsong
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2008, 118 (03): : 413 - 424
  • [25] Ricci curvature and Lp-convergence
    Honda, Shouhei
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 705 : 85 - 154
  • [26] Effective Lp pinching for the concircular curvature
    Hebey, Emmanuel
    Vaugon, Michel
    Journal of Geometric Analysis, 1996, 6 (04): : 531 - 553
  • [28] A CLASS OF INVERSE CURVATURE FLOWS AND LP DUAL CHRISTOFFEL-MINKOWSKI PROBLEM
    Ding, Shanwei
    LI, Guanghan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (01) : 697 - 752
  • [29] A curvature flow to the Lp Minkowski-type problem of q-capacity
    Liu, Xinying
    Sheng, Weimin
    ADVANCED NONLINEAR STUDIES, 2023, 23 (01)
  • [30] A priori bounds and existence of smooth solutions to a Lp Aleksandrov problem for Codazzi tensor with log-convex measure
    Chen, Zhengmao
    ELECTRONIC RESEARCH ARCHIVE, 2022, 31 (02): : 840 - 859