A comparison of item selection rules at the early stages of computerized adaptive testing

被引:45
|
作者
Chen, SY
Ankenmann, RD
Chang, HH
机构
[1] Univ Iowa, Iowa City, IA 52242 USA
[2] Educ Testing Serv, Princeton, NJ 08541 USA
关键词
computerized adaptive testing; Fisher information; global information; item information; item response theory; Kullback-Leibler information; local information;
D O I
10.1177/01466210022031705
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
The effects of five item selection rules-Fisher information (FI), Fisher interval information (FII), Fisher information with a posterior distribution (FIP), Kullback-Leibler information (KL), and Kullback-Leibler information with a posterior distribution (KLP)-were compared with respect to the efficiency and precision of trait (theta) estimation at the early stages of computerized adaptive testing (CAT). FII, FIP, KL, and KLP performed marginally better than Fl at the early stages of CAT for theta = -3 and -2. For tests longer than 10 items, there appeared to be no precision advantage for any of the selection rules.
引用
收藏
页码:241 / 255
页数:15
相关论文
共 50 条