Better confidence intervals: The double bootstrap with no pivot

被引:16
|
作者
Letson, D [1 ]
McCullough, BD
机构
[1] Univ Miami, Coral Gables, FL 33124 USA
[2] Fed Commun Commiss, Washington, DC USA
关键词
confidence interval; convergence; elasticity; flexibility; iterated bootstrap; pivot;
D O I
10.2307/1244557
中图分类号
F3 [农业经济];
学科分类号
0202 ; 020205 ; 1203 ;
摘要
The double bootstrap is an important advance in confidence interval generation because it converges faster than the already popular single bootstrap. Yet the usual double bootstrap requires a stable pivot that is not always available, e.g., when estimating flexibilities or substitution elasticities. A recently developed double bootstrap does not require a pivot. A Monte Carlo analysis with the Waugh data finds the double bootstrap achieves nominal coverage whereas the single bootstrap does not. A useful artifice dramatically decreases the computational time of the double bootstrap.
引用
收藏
页码:552 / 559
页数:8
相关论文
共 50 条
  • [21] ON SYMMETRIC BOOTSTRAP CONFIDENCE-INTERVALS
    HALL, P
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1988, 50 (01): : 35 - 45
  • [22] Sequential iterated bootstrap confidence intervals
    Lee, SMS
    Young, GA
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1996, 58 (01): : 235 - 251
  • [23] A REVIEW OF BOOTSTRAP CONFIDENCE-INTERVALS
    DICICCIO, TJ
    ROMANO, JP
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1988, 50 (03): : 338 - 354
  • [24] Test inversion bootstrap confidence intervals
    Carpenter, J
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 : 159 - 172
  • [25] A note on bootstrap confidence intervals for proportions
    Wang, Weizhen
    [J]. STATISTICS & PROBABILITY LETTERS, 2013, 83 (12) : 2699 - 2702
  • [26] WILD CLUSTER BOOTSTRAP CONFIDENCE INTERVALS
    MacKinnon, James G.
    [J]. ACTUALITE ECONOMIQUE, 2015, 91 (1-2): : 11 - 33
  • [27] Bootstrap confidence intervals for tail indices
    Caers, J
    Beirlant, J
    Vynckier, P
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1998, 26 (03) : 259 - 277
  • [28] Bootstrap confidence intervals for the Pareto index
    Guillou, A
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2000, 29 (01) : 211 - 226
  • [29] The Automatic Construction of Bootstrap Confidence Intervals
    Efron, Bradley
    Narasimhan, Balasubramanian
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (03) : 608 - 619
  • [30] Bootstrap confidence intervals for ratios of expectations
    Choquet, Denis
    L'Ecuyer, Pierre
    Léger, Christian
    [J]. ACM Transactions on Modeling and Computer Simulation, 1999, 9 (04): : 326 - 348