Visualization of Dengue Incidences for Vulnerability using K-means

被引:0
|
作者
Mathur, Nirbhay [1 ]
Asirvadam, Vijanth S. [1 ]
Dass, Sarat C. [2 ]
Gill, Balvinder Singh [3 ]
机构
[1] Univ Teknol PETRONAS, CISIR, Dept Elect & Elect Engn, Bander Seri Iskandar 32610, Perak, Malaysia
[2] Univ Teknol PETRONAS, CISIR, Dept Fundamental & Appl Sci, Bander Seri Iskandar 32610, Perak, Malaysia
[3] Minist Hlth Malaysia MoH, Dis ControlDiv, Kuala Lumpur, Malaysia
关键词
Dengue; Geographical Information System (GIS); K-means; clustering; Gaussian Mixture model; AEDES-ALBOPICTUS; ABUNDANCE; VARIABLES; PENANG; VECTOR; MODELS; FEVER;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Dengue is the world's most rapidly spreading and geographically widespread arthropod-borne disease. Dengue epidemics are observed to be larger, more frequent and associated with more severe disease than they were in the past. To control the incidence of the disease, it is important to be able to identify the hot-spots localized regions of high incidences. This work focuses on identifying hot-spots of dengue using the K-means clustering algorithm. Data is collected from the state of Selangor in Malaysia from 2013 to 2014. Visualization of dengue vulnerability is obtained via Gaussian mixture models fitted using K-means algorithm. Results demonstrate the ability to render visualization for the vulnerability of dengue incidences on the basis of high density and low density cluster using Gaussian mixture and K-means algorithm.
引用
收藏
页码:569 / 573
页数:5
相关论文
共 50 条
  • [31] Cell Scene Division and Visualization Based on Autoencoder and K-Means Algorithm
    Zeng, Jun
    Wang, Juan
    Guo, Liang
    Fan, Guanghui
    Zhang, Kaixuan
    Gui, Guan
    IEEE ACCESS, 2019, 7 : 165217 - 165225
  • [32] Spectral Comparison Using k-Means Clustering
    Ramachandran, Vignesh R.
    Mitchell, Herbert J.
    Jacobs, Samantha K.
    Tzeng, Nigel H.
    Firpi, Alexer H.
    Rodriguez, Benjamin M.
    2014 IEEE AEROSPACE CONFERENCE, 2014,
  • [33] Elastic K-means using posterior probability
    Zheng, Aihua
    Jiang, Bo
    Li, Yan
    Zhang, Xuehan
    Ding, Chris
    PLOS ONE, 2017, 12 (12):
  • [34] A FAST k-MEANS IMPLEMENTATION USING CORESETS
    Frahling, Gereon
    Sohler, Christian
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2008, 18 (06) : 605 - 625
  • [35] Balanced K-means using Quantum annealing
    Zaiou, Ahmed
    Bennani, Younes
    Matei, Basarab
    Hibti, Mohamed
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [36] Pattern Discovery Using K-Means Algorithm
    Ahmed, Almahdi Mohammed
    Norwawi, Norita Md
    Ishak, Wan Hussain Wan
    Alkilany, Ahmed
    2014 WORLD CONGRESS ON COMPUTER APPLICATIONS AND INFORMATION SYSTEMS (WCCAIS), 2014,
  • [37] An Improved K-Means Using in Anomaly Detection
    Yin, Chunyong
    Zhang, Sun
    Wang, Jin
    Kim, Jeong-Uk
    2015 FIRST INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE THEORY, SYSTEMS AND APPLICATIONS (CCITSA 2015), 2015, : 129 - 131
  • [38] Customer Segmentation using K-means Clustering
    Kansal, Tushar
    Bahuguna, Suraj
    Singh, Vishal
    Choudhury, Tanupriya
    PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL TECHNIQUES, ELECTRONICS AND MECHANICAL SYSTEMS (CTEMS), 2018, : 135 - 139
  • [39] Deep k-Means: Jointly clustering with k-Means and learning representations
    Fard, Maziar Moradi
    Thonet, Thibaut
    Gaussier, Eric
    PATTERN RECOGNITION LETTERS, 2020, 138 : 185 - 192
  • [40] K and starting means for k-means algorithm
    Fahim, Ahmed
    JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 55