Cohomogeneity one manifolds of spin(7) and G2 holonomy (vol 300, pg 139, 2002)

被引:0
|
作者
Cvetic, M
Gibbons, GW
Lu, H
Pope, CN
机构
关键词
D O I
10.1016/j.aop.2003.08.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:507 / 507
页数:1
相关论文
共 50 条
  • [41] CFT description of string theory compactified on non-compact manifolds with G2 holonomy
    Eguchi, T
    Sugawara, Y
    [J]. PHYSICS LETTERS B, 2001, 519 (1-2) : 149 - 158
  • [42] Comments on M theory dynamics on G2 holonomy manifolds -: art. no. 001
    Ita, H
    Oz, Y
    Sakai, T
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2002, (04):
  • [43] Infinitely many new families of complete cohomogeneity one G2-manifolds: G2 analogues of the Taub-NUT and Eguchi-Hanson spaces
    Foscolo, Lorenzo
    Haskins, Mark
    Nordstrom, Johannes
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (07) : 2153 - 2220
  • [44] INVARIANTS OF G2 AND Spin(7) IN POSITIVE CHARACTERISTIC
    Zubkov A.N.
    Shestakov I.P.
    [J]. Transformation Groups, 2018, 23 (2) : 555 - 588
  • [45] Orientifolds and slumps in G2 and Spin(7) metrics
    Cvetic, M
    Gibbons, GW
    Lü, H
    Pope, CN
    [J]. ANNALS OF PHYSICS, 2004, 310 (02) : 265 - 301
  • [46] Integral geometry under G2 and Spin(7)
    Bernig, Andreas
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2011, 184 (01) : 301 - 316
  • [47] Integral geometry under G2 and Spin(7)
    Andreas Bernig
    [J]. Israel Journal of Mathematics, 2011, 184 : 301 - 316
  • [48] INVARIANTS OF G2 AND Spin (7) IN POSITIVE CHARACTERISTIC
    Zubkov, A. N.
    Shestakov, I. P.
    [J]. TRANSFORMATION GROUPS, 2018, 23 (02) : 555 - 588
  • [49] (3+3+2) warped-like product manifolds with Spin(7) holonomy
    Uguz, Selman
    Bilge, Ayse H.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (06) : 1093 - 1103
  • [50] Cohomogeneity-one G2-Laplacian flow on the 7-torus
    Huang, Hongnian
    Wang, Yuanqi
    Yao, Chengjian
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 98 : 349 - 368