Empirical Power and Sample Size Calculations for Cluster-Randomized and Cluster-Randomized Crossover Studies

被引:45
|
作者
Reich, Nicholas G. [1 ]
Myers, Jessica A. [2 ]
Obeng, Daniel [3 ]
Milstone, Aaron M. [4 ]
Perl, Trish M. [5 ]
机构
[1] Univ Massachusetts, Div Biostat & Epidemiol, Amherst, MA 01003 USA
[2] Brigham & Womens Hosp, Div Pharmacoepidemiol & Pharmacoecon, Boston, MA 02115 USA
[3] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD USA
[4] Johns Hopkins Univ, Sch Med, Dept Pediat, Div Pediat Infect Dis, Baltimore, MD 21205 USA
[5] Johns Hopkins Univ, Sch Med, Div Infect Dis, Dept Med, Baltimore, MD 21205 USA
来源
PLOS ONE | 2012年 / 7卷 / 04期
关键词
DESIGN;
D O I
10.1371/journal.pone.0035564
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years, the number of studies using a cluster-randomized design has grown dramatically. In addition, the cluster-randomized crossover design has been touted as a methodological advance that can increase efficiency of cluster-randomized studies in certain situations. While the cluster-randomized crossover trial has become a popular tool, standards of design, analysis, reporting and implementation have not been established for this emergent design. We address one particular aspect of cluster-randomized and cluster-randomized crossover trial design: estimating statistical power. We present a general framework for estimating power via simulation in cluster-randomized studies with or without one or more crossover periods. We have implemented this framework in the clusterPower software package for R, freely available online from the Comprehensive R Archive Network. Our simulation framework is easy to implement and users may customize the methods used for data analysis. We give four examples of using the software in practice. The clusterPower package could play an important role in the design of future cluster-randomized and cluster-randomized crossover studies. This work is the first to establish a universal method for calculating power for both cluster-randomized and cluster-randomized clinical trials. More research is needed to develop standardized and recommended methodology for cluster-randomized crossover studies.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Simple sample size calculation for cluster-randomized trials
    Hayes, RJ
    Bennett, S
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 1999, 28 (02) : 319 - 326
  • [2] Sample size estimation for survival outcomes in cluster-randomized studies with small cluster sizes
    Manatunga, AK
    Chen, S
    [J]. BIOMETRICS, 2000, 56 (02) : 616 - 621
  • [3] The Effect of Cluster Size Variability on Statistical Power in Cluster-Randomized Trials
    Lauer, Stephen A.
    Kleinman, Ken P.
    Reich, Nicholas G.
    [J]. PLOS ONE, 2015, 10 (04):
  • [4] Cluster-randomized trials
    Fayers, PM
    Jordhoy, MS
    Kaasa, S
    [J]. PALLIATIVE MEDICINE, 2002, 16 (01) : 69 - 70
  • [5] The cluster-randomized trial
    Giraudeau, B
    [J]. M S-MEDECINE SCIENCES, 2004, 20 (03): : 363 - +
  • [6] Sample Size Planning for Cluster-Randomized Interventions Probing Multilevel Mediation
    Kelcey, Ben
    Spybrook, Jessaca
    Dong, Nianbo
    [J]. PREVENTION SCIENCE, 2019, 20 (03) : 407 - 418
  • [7] Sample size in cluster-randomized trials with time to event as the primary endpoint
    Jahn-Eimermacher, Antje
    Ingel, Katharina
    Schneider, Astrid
    [J]. STATISTICS IN MEDICINE, 2013, 32 (05) : 739 - 751
  • [8] Sample Size Planning for Cluster-Randomized Interventions Probing Multilevel Mediation
    Ben Kelcey
    Jessaca Spybrook
    Nianbo Dong
    [J]. Prevention Science, 2019, 20 : 407 - 418
  • [9] Power and Sample Size Determination for Multilevel Mediation in Three-Level Cluster-Randomized Trials
    Kelcey, Ben
    Xie, Yanli
    Spybrook, Jessaca
    Dong, Nianbo
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2021, 56 (03) : 496 - 513
  • [10] Cluster-Randomized, Crossover Trial of Head Positioning in Acute Stroke
    Anderson, C. S.
    Arima, H.
    Lavados, P.
    Billot, L.
    Hackett, M. L.
    Olavarria, V. V.
    Munoz Venturelli, P.
    Brunser, A.
    Peng, B.
    Cui, L.
    Song, L.
    Rogers, K.
    Middleton, S.
    Lim, J. Y.
    Forshaw, D.
    Lightbody, C. E.
    Woodward, M.
    Pontes-Neto, O.
    De Silva, H. A.
    Lin, R. -T.
    Lee, T. -H.
    Pandian, J. D.
    Mead, G. E.
    Robinson, T.
    Watkins, C.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2017, 376 (25): : 2437 - 2447