Iterative Approaches to Find Zeros of Maximal Monotone Operators by Hybrid Approximate Proximal Point Methods

被引:3
|
作者
Ceng, Lu Chuan [2 ]
Liou, Yeong Cheng [3 ]
Naraghirad, Eskandar [1 ]
机构
[1] Univ Yasuj, Dept Math, Yasuj 75914, Iran
[2] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[3] Cheng Shiu Univ, Dept Informat Management, Kaohsiung 833, Taiwan
关键词
STRONG-CONVERGENCE; ALGORITHMS; WEAK;
D O I
10.1155/2011/282171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to introduce and investigate two kinds of iterative algorithms for the problem of finding zeros of maximal monotone operators. Weak and strong convergence theorems are established in a real Hilbert space. As applications, we consider a problem of finding a minimizer of a convex function.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] The indefinite proximal point algorithms for maximal monotone operators
    Jiang, Fan
    Cai, Xingju
    Han, Deren
    OPTIMIZATION, 2021, 70 (08) : 1759 - 1790
  • [12] A proximal point method for the sum of maximal monotone operators
    Xiao, Hongying
    Zeng, Xueying
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (17) : 2638 - 2650
  • [13] A Hybrid Approximate Extragradient – Proximal Point Algorithm Using the Enlargement of a Maximal Monotone Operator
    M. V. Solodov
    B. F. Svaiter
    Set-Valued Analysis, 1999, 7 : 323 - 345
  • [14] A hybrid approximate extragradient - Proximal point algorithm using the enlargement of a maximal monotone operator
    Solodov, MV
    Svaiter, BF
    SET-VALUED ANALYSIS, 1999, 7 (04): : 323 - 345
  • [15] A hybrid of the extragradient method and proximal point algorithm for inverse strongly monotone operators and maximal monotone operators in Banach spaces
    Li, Liwei
    Song, W.
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2007, 1 (03) : 398 - 413
  • [16] On the convergence analysis of inexact hybrid extragradient proximal point algorithms for maximal monotone operators
    Ceng, Lu-Chuan
    Yao, Jen-Chih
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 217 (02) : 326 - 338
  • [17] A hybrid proximal point algorithm for solving the general variational inclusions with (A,η)-maximal monotone operators
    Chen, Jun-Min
    Fan, Tie-Gang
    Li, Xue-Fei
    INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, 2009, : 783 - +
  • [18] An Approximate Proximal Point Algorithm for Maximal Monotone Inclusion Problems
    Huang, Lingling
    Liu, Sanyang
    Gao, Weifeng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [19] A new approximate proximal point algorithm for maximal monotone operator
    He, BS
    Liao, LZ
    Yang, ZH
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (02): : 200 - 206
  • [20] A new approximate proximal point algorithm for maximal monotone operator
    Bingsheng He
    Lizhi Liao
    Zhenhua Yang
    Science in China Series A: Mathematics, 2003, 46 : 200 - 206