Spontaneous Gamma Activity in Schizophrenia (vol 72, pg 813, 2015)

被引:0
|
作者
Hirano, Yoji
机构
关键词
D O I
10.1001/jamapsychiatry.2015.34
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
IMPORTANCE A major goal of translational neuroscience is to identify neural circuit abnormalities in neuropsychiatric disorders that can be studied in animal models to facilitate the development of new treatments. Oscillations in the gamma band (30-100 Hz) of the electroencephalogram have received considerable interest as the basic mechanisms underlying these oscillations are understood, and gamma abnormalities have been found in schizophrenia (SZ). Animal models of SZ based on hypofunction of the N-methyl-D-aspartate receptor (NMDAR) demonstrate increased spontaneous broadband gamma power, but this phenomenon has not been identified clearly in patients with SZ. OBJECTIVE To examine spontaneous gamma power and its relationship to evoked gamma oscillations in the auditory cortex of patients with SZ. DESIGN, SETTING, AND PARTICIPANTS We performed a cross-sectional study including 24 patients with chronic SZ and 24 matched healthy control participants at the Veterans Affairs Boston Healthcare System from January 1, 2009, through December 31, 2012. Electroencephalograms were obtained during auditory steady-state stimulation at multiple frequencies (20, 30, and 40 Hz) and during a resting state in 18 participants in each group. MAIN OUTCOMES AND MEASURES Electroencephalographic activity in the auditory cortex was estimated using dipole source localization. Auditory steady-state response (ASSR) measures included the phase-locking factor and evoked power. Spontaneous gamma power was measured as induced (non-phase-locked) gamma power in the ASSR data and as total gamma power in the resting-state data. RESULTS The ASSR phase-locking factor was reduced significantly in patients with SZ compared with controls for the 40-Hz stimulation (mean [SD], 0.075 [0.028] vs 0.113 [0.065]; F-1,F-46 = 6.79 [P = .012]) but not the 20- or the 30-Hz stimulation (0.042 [0.038] vs 0.043 [0.034]; F-1,F-46 = 0.006 [P = .938] and 0.084 [0.040] vs 0.098 [0.050]; F-1,F-46 = 1.605 [P = .212], respectively), repeating previous findings. The mean [SD] broadband-induced (30-100 Hz) gamma power was increased in patients with SZ compared with controls during steady-state stimulation (6.579 [3.783] vs 3.984 [1.843]; F-1,F-46 = 9.128 [P = .004]; d = 0.87) but not during rest (0.006 [0.003] vs 0.005 [0.002]; F-1,F-34 = 1.067 [P = .309]; d = 0.35). Induced gamma power in the left hemisphere of the patients with SZ during the 40-Hz stimulation was positively correlated with auditory hallucination symptoms (tangential,tau = 0.587 [P = .031]; radial,tau = 0.593 [P = .024]) and negatively correlated with the ASSR phase-locking factor (baseline:tau = -0.572 [P = .024]; ASSR:tau = -0.568 [P = .032]). CONCLUSIONS AND RELEVANCE Spontaneous gamma activity is increased during auditory steady-state stimulation in SZ, reflecting a disruption in the normal balance of excitation and inhibition. This phenomenon interacts with evoked oscillations, possibly contributing to the gamma ASSR deficit found in SZ. The similarity of increased spontaneous gamma power in SZ to the findings of increased spontaneous gamma power in animal models of NMDAR hypofunction suggests that spontaneous gamma power could serve as a biomarker for the integrity of NMDARs on parvalbumin-expressing inhibitory interneurons in humans and in animal models of neuropsychiatric disorders.
引用
收藏
页码:297 / 297
页数:1
相关论文
共 50 条
  • [21] Molecular and cellular mechanisms that initiate pain and itch (vol 72, pg 3201, 2015)
    Luo, Jialie
    Feng, Jing
    Liu, Shenbin
    Walters, Edgar T.
    Hu, Hongzhen
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2015, 72 (18) : 3587 - 3588
  • [22] An overview of injectable polymeric hydrogels for tissue engineering (vol 72, pg 543, 2015)
    Sivashanmugam, A.
    Kumar, R. Arun
    Priya, M. Vishnu
    Nair, Shantikumar V.
    Jayakumar, R.
    EUROPEAN POLYMER JOURNAL, 2016, 75 : 538 - 538
  • [23] EVOKED AND SPONTANEOUS GAMMA ABNORMALITIES IN SCHIZOPHRENIA
    Spencer, Kevin M.
    SCHIZOPHRENIA BULLETIN, 2015, 41 : S26 - S26
  • [24] Decreased coherence in spontaneous EEG high frequency (gamma activity) in patients with schizophrenia
    Dealberto, M. J.
    Krasteniakov, N.
    Skinner, C.
    MacKenzie, J.
    Wiatrowska, B.
    Comey, R.
    Roy, P.
    Broughton, R.
    SCHIZOPHRENIA RESEARCH, 2006, 86 : S75 - S76
  • [25] Human embryo research (vol 108, pg 813, 2001)
    Chesney, R
    PEDIATRICS, 2001, 108 (05) : 1221 - 1221
  • [26] Unrecognised myocardial infarction in patients with schizophrenia (vol 27, pg 106, 2015)
    Al-Zuhairi, Karam Sadoon
    ACTA NEUROPSYCHIATRICA, 2015, 27 (02): : 129 - 129
  • [27] Chronic schizophrenia and the role of the general practitioner (vol 44, pg 802, 2015)
    Hope, J.
    Keks, N.
    AUSTRALIAN FAMILY PHYSICIAN, 2015, 44 (12) : 876 - 876
  • [28] Effect of the orientation and fluid flow on the accumulation of organotin compounds to Chemcatcher passive samplers (vol 17, pg 813, 2015)
    Ahkola, H.
    Juntunen, J.
    Laitinen, M.
    Krogerus, K.
    Huttula, T.
    Herve, S.
    Witick, A.
    ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 2022, 24 (10) : 1957 - 1957
  • [30] Cannabinoid receptor 1 is a major mediator of renal fibrosis (vol 88, pg 72, 2015)
    Lecru, L.
    Desterke, C.
    Grassin-Delyle, S.
    KIDNEY INTERNATIONAL, 2017, 92 (04) : 1018 - 1018