In silico prediction of high-resolution Hi-C interaction matrices

被引:26
|
作者
Zhang, Shilu [1 ]
Chasman, Deborah [1 ]
Knaack, Sara [1 ]
Roy, Sushmita [1 ,2 ]
机构
[1] Wisconsin Inst Discovery, 330 North Orchard St, Madison, WI 53715 USA
[2] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53715 USA
基金
美国国家卫生研究院;
关键词
EMBRYONIC STEM-CELLS; GENOME ORGANIZATION; READ ALIGNMENT; 3D GENOME; ENHANCERS; PROTEINS; ELEMENTS; DOMAINS; MAP;
D O I
10.1038/s41467-019-13423-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The three-dimensional (3D) organization of the genome plays an important role in gene regulation bringing distal sequence elements in 3D proximity to genes hundreds of kilobases away. Hi-C is a powerful genome-wide technique to study 3D genome organization. Owing to experimental costs, high resolution Hi-C datasets are limited to a few cell lines. Computational prediction of Hi-C counts can offer a scalable and inexpensive approach to examine 3D genome organization across multiple cellular contexts. Here we present HiC-Reg, an approach to predict contact counts from one-dimensional regulatory signals. HiC-Reg predictions identify topologically associating domains and significant interactions that are enriched for CCCTC-binding factor (CTCF) bidirectional motifs and interactions identified from complementary sources. CTCF and chromatin marks, especially repressive and elongation marks, are most important for HiC-Reg's predictive performance. Taken together, HiC-Reg provides a powerful framework to generate high-resolution profiles of contact counts that can be used to study individual locus level interactions and higher-order organizational units of the genome.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] In silico prediction of high-resolution Hi-C interaction matrices
    Shilu Zhang
    Deborah Chasman
    Sara Knaack
    Sushmita Roy
    [J]. Nature Communications, 10
  • [2] The High-Resolution Coronal Imager (Hi-C)
    Ken Kobayashi
    Jonathan Cirtain
    Amy R. Winebarger
    Kelly Korreck
    Leon Golub
    Robert W. Walsh
    Bart De Pontieu
    Craig DeForest
    Alan Title
    Sergey Kuzin
    Sabrina Savage
    Dyana Beabout
    Brent Beabout
    William Podgorski
    David Caldwell
    Kenneth McCracken
    Mark Ordway
    Henry Bergner
    Richard Gates
    Sean McKillop
    Peter Cheimets
    Simon Platt
    Nick Mitchell
    David Windt
    [J]. Solar Physics, 2014, 289 : 4393 - 4412
  • [3] The High-Resolution Coronal Imager (Hi-C)
    Kobayashi, Ken
    Cirtain, Jonathan
    Winebarger, Amy R.
    Korreck, Kelly
    Golub, Leon
    Walsh, Robert W.
    De Pontieu, Bart
    DeForest, Craig
    Title, Alan
    Kuzin, Sergey
    Savage, Sabrina
    Beabout, Dyana
    Beabout, Brent
    Podgorski, William
    Caldwell, David
    McCracken, Kenneth
    Ordway, Mark
    Bergner, Henry
    Gates, Richard
    McKillop, Sean
    Cheimets, Peter
    Platt, Simon
    Mitchell, Nick
    Windt, David
    [J]. SOLAR PHYSICS, 2014, 289 (11) : 4393 - 4412
  • [4] Hi-C 2.0: An optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation
    Belaghzal, Houda
    Dekker, Job
    Gibcus, Johan H.
    [J]. METHODS, 2017, 123 : 56 - 65
  • [5] Cooltools: Enabling high-resolution Hi-C analysis in Python']Python
    Abdennur, Nezar
    Abraham, Sameer
    Fudenberg, Geoffrey
    Flyamer, Ilya M.
    Galitsyna, Aleksandra A.
    Goloborodko, Anton
    Imakaev, Maxim
    Oksuz, Betul A.
    Venev, Sergey V.
    Xiao, Yao
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (05)
  • [6] An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data
    Mark Carty
    Lee Zamparo
    Merve Sahin
    Alvaro González
    Raphael Pelossof
    Olivier Elemento
    Christina S. Leslie
    [J]. Nature Communications, 8
  • [7] Promoter Capture Hi-C: High-resolution, Genome-wide Profiling of Promoter Interactions
    Schoenfelder, Stefan
    Javierre, Biola-Maria
    Furlan-Magaril, Mayra
    Wingett, Steven W.
    Fraser, Peter
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2018, (136):
  • [8] Deciphering High-Resolution 3D Chromatin Organization via Capture Hi-C
    Hauth, Antonia
    Galupa, Rafael
    Servant, Nicolas
    Villacorta, Laura
    Hauschulz, Kai
    van Bemmel, Joke Gerarda
    Loda, Agnese
    Heard, Edith
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2022, (188):
  • [9] Reconstructing high-resolution chromosome three-dimensional structures by Hi-C complex networks
    Tong Liu
    Zheng Wang
    [J]. BMC Bioinformatics, 19
  • [10] An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data
    Carty, Mark
    Zamparo, Lee
    Sahin, Merve
    Gonzalez, Alvaro
    Pelossof, Raphael
    Elemento, Olivier
    Leslie, Christina S.
    [J]. NATURE COMMUNICATIONS, 2017, 8