Surface-Enhanced, Spatially Offset Raman Spectroscopy (SESORS) in Tissue Analogues

被引:41
|
作者
Asiala, Steven M. [1 ]
Shand, Neil C. [2 ]
Faulds, Karen [1 ]
Graham, Duncan [1 ]
机构
[1] Univ Strathclyde, Dept Pure & Appl Chem, Technol & Innovat Ctr, 99 George St, Glasgow G1 1RD, Lanark, Scotland
[2] Def Sci & Technol Lab, Salisbury SP4 0JQ, Wilts, England
基金
英国工程与自然科学研究理事会;
关键词
nanoparticles; nanotags; Raman; SORS; tissue analysis; IN-VIVO; SENSITIVITY; BONE;
D O I
10.1021/acsami.7b09197
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Surface-enhanced, spatially offset Raman spectroscopy (SESORS) combines the remarkable enhancements in sensitivity afforded by surface-enhanced Raman spectroscopy (SERS) with the non-invasive, subsurface sampling capabilities of spatially offset Raman spectroscopy. Taken together, these techniques show great promise for in vivo Raman measurements. Herein, we present a step forward for this technique, demonstrating SESORS through tissue analogues of six known and varied thicknesses, with a large number of distinct spatial offsets, in a backscattering optical geometry. This is accomplished by spin-coating SERS-active nanoparticles (NPs) on glass slides and monitoring the relative spectral contribution from the NPs and tissue sections, respectively, as a function of both the tissue thickness and the spatial offset of the collection probe. The results show that SESORS outperforms SERS alone for this purpose, the NP signal can be attained at tissue thicknesses of >6.75 mm, and greater tissue thicknesses require greater spatial offsets to maximize the NP signal, all with an optical geometry optimized for utility. This demonstration represents a step forward toward the implementation of SESORS for non-invasive, in vivo analysis.
引用
收藏
页码:25488 / 25494
页数:7
相关论文
共 50 条
  • [21] Surface-enhanced Raman spectroscopy
    Xiao Xia Han
    Rebeca S. Rodriguez
    Christy L. Haynes
    Yukihiro Ozaki
    Bing Zhao
    Nature Reviews Methods Primers, 1
  • [22] Surface-enhanced Raman spectroscopy
    Haynes, CL
    McFarland, AD
    Van Duyne, RP
    ANALYTICAL CHEMISTRY, 2005, 77 (17) : 338A - 346A
  • [23] Surface-enhanced Raman Spectroscopy
    Nishino, Tomoaki
    ANALYTICAL SCIENCES, 2018, 34 (09) : 1061 - 1062
  • [24] Surface-enhanced Raman spectroscopy
    Popp, Juergen
    Mayerhoefer, Thomas
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2009, 394 (07) : 1717 - 1718
  • [25] Surface Enhanced Spatially Offset Raman Spectroscopy Detection of Neurochemicals Through the Skull
    Moody, Amber S.
    Baghernejad, Peymon C.
    Webb, Kelsey R.
    Sharma, Bhavya
    ANALYTICAL CHEMISTRY, 2017, 89 (11) : 5689 - 5693
  • [26] Immunoassay of Rat Brain Tissue by Surface-enhanced Raman Spectroscopy
    Yang Jin
    Liu Zhuo
    Su Hongyang
    Peng Ru
    Song Wei
    Zhao Bing
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2015, 36 (11): : 2317 - 2321
  • [27] Spatially offset Raman spectroscopy
    Mosca, Sara
    Conti, Claudia
    Stone, Nick
    Matousek, Pavel
    NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [28] Spatially offset Raman spectroscopy
    Nature Reviews Methods Primers, 1
  • [29] Reproducibility in Surface-Enhanced Raman Spectroscopy
    熊敏
    叶坚
    Journal of Shanghai Jiaotong University(Science), 2014, 19 (06) : 681 - 690
  • [30] Surface-Enhanced Raman Spectroscopy of Graphene
    Schedin, Fred
    Lidorikis, Elefterios
    Lombardo, Antonio
    Kravets, Vasyl G.
    Geim, Andre K.
    Grigorenko, Alexander N.
    Novoselov, Kostya S.
    Ferrari, Andrea C.
    ACS NANO, 2010, 4 (10) : 5617 - 5626