The degree of Q-Fano threefolds

被引:15
|
作者
Prokhorov, Yu. G. [1 ]
机构
[1] Max Planck Inst Math, D-5300 Bonn, Germany
关键词
D O I
10.1070/SM2007v198n11ABEH003901
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the degree of three-dimensional Fano varieties with terminal Q-factorial singularities and Picard number one is at most 125/2 and this bound is sharp.
引用
收藏
页码:1683 / 1702
页数:20
相关论文
共 50 条
  • [21] On nodal prime Fano threefolds of degree 10
    Olivier, Debarre
    Atanas, Iliev
    Laurent, Manivel
    [J]. SCIENCE CHINA-MATHEMATICS, 2011, 54 (08) : 1591 - 1609
  • [22] On nodal prime Fano threefolds of degree 10
    DEBARRE Olivier
    ILIEV Atanas
    MANIVEL Laurent
    [J]. Science China Mathematics, 2011, 54 (08) : 1591 - 1609
  • [23] On the degree of Fano threefolds with canonical Gorenstein singularities
    Prokhorov, YG
    [J]. SBORNIK MATHEMATICS, 2005, 196 (1-2) : 77 - 114
  • [24] On nodal prime Fano threefolds of degree 10
    Olivier Debarre
    Atanas Iliev
    Laurent Manivel
    [J]. Science China Mathematics, 2011, 54 : 1591 - 1609
  • [25] On the birational unboundedness of higher dimensional Q-Fano varieties
    Okada, Takuzo
    [J]. MATHEMATISCHE ANNALEN, 2009, 345 (01) : 195 - 212
  • [26] GENERAL ELEPHANTS OF Q-FANO 3-FOLDS
    ALEXEEV, V
    [J]. COMPOSITIO MATHEMATICA, 1994, 91 (01) : 91 - 116
  • [27] Deformations of weak Q-Fano 3-folds
    Sano, Taro
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (07)
  • [28] Boundedness of canonical Q-Fano 3-folds
    Kollár, J
    Miyaoka, Y
    Mori, S
    Takagi, H
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2000, 76 (05) : 73 - 77
  • [29] Deforming elephants of Q-Fano 3-folds
    Sano, Taro
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 95 : 23 - 51
  • [30] Fano threefolds with canonical Gorenstein singularities and big degree
    Ilya Karzhemanov
    [J]. Mathematische Annalen, 2015, 362 : 1107 - 1142