A Twin-8T SRAM Computation-in-Memory Unit-Macro for Multibit CNN-Based AI Edge Processors

被引:132
|
作者
Si, Xin [1 ,2 ]
Chen, Jia-Jing [2 ]
Tu, Yung-Ning [2 ]
Huang, Wei-Hsing [2 ]
Wang, Jing-Hong [2 ]
Chiu, Yen-Cheng [2 ]
Wei, Wei-Chen [2 ]
Wu, Ssu-Yen [2 ]
Sun, Xiaoyu [3 ]
Liu, Rui [4 ]
Yu, Shimeng [3 ]
Liu, Ren-Shuo [2 ,4 ]
Hsieh, Chih-Cheng [2 ]
Tang, Kea-Tiong [2 ]
Li, Qiang [1 ,2 ]
Chang, Meng-Fan [2 ]
机构
[1] UESTC, Inst Integrated Circuits & Syst, Chengdu 610054, Peoples R China
[2] NTHU, Dept Elect Engn, Hsinchu 300, Taiwan
[3] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[4] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85281 USA
关键词
Artificial intelligence; Kernel; Power demand; Artificial intelligence (AI); computation-in-memory (CIM); convolutional neural network (CNN); random access memory; Twin 8T (T8T); NEURAL-NETWORK ACCELERATOR;
D O I
10.1109/JSSC.2019.2952773
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Computation-in-memory (CIM) is a promising candidate to improve the energy efficiency of multiply-and-accumulate (MAC) operations of artificial intelligence (AI) chips. This work presents an static random access memory (SRAM) CIM unit-macro using: 1) compact-rule compatible twin-8T (T8T) cells for weighted CIM MAC operations to reduce area overhead and vulnerability to process variation; 2) an even-odd dual-channel (EODC) input mapping scheme to extend input bandwidth; 3) a two's complement weight mapping (C2WM) scheme to enable MAC operations using positive and negative weights within a cell array in order to reduce area overhead and computational latency; and 4) a configurable global-local reference voltage generation (CGLRVG) scheme for kernels of various sizes and bit precision. A 64 $\times $ 60 b T8T unit-macro with 1-, 2-, 4-b inputs, 1-, 2-, 5-b weights, and up to 7-b MAC-value (MACV) outputs was fabricated as a test chip using a foundry 55-nm process. The proposed SRAM-CIM unit-macro achieved access times of 5 ns and energy efficiency of 37.5-45.36 TOPS/W under 5-b MACV output.
引用
收藏
页码:189 / 202
页数:14
相关论文
共 24 条
  • [1] A Twin-8T SRAM Computation-In-Memory Macro for Multiple-Bit CNN-Based Machine Learning
    Si, Xin
    Chen, Jia-Jing
    Tu, Yung-Ning
    Huang, Wei-Hsing
    Wang, Jing-Hong
    Chiu, Yen-Cheng
    Wei, Wei-Chen
    Wu, Ssu-Yen
    Sun, Xiaoyu
    Liu, Rui
    Yu, Shimeng
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Li, Qiang
    Chang, Meng-Fan
    [J]. 2019 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2019, 62 : 396 - +
  • [2] A 4-Kb 1-to-8-bit Configurable 6T SRAM-Based Computation-in-Memory Unit-Macro for CNN-Based AI Edge Processors
    Chiu, Yen-Cheng
    Zhang, Zhixiao
    Chen, Jia-Jing
    Si, Xin
    Liu, Ruhui
    Tu, Yung-Ning
    Su, Jian-Wei
    Huang, Wei-Hsing
    Wang, Jing-Hong
    Wei, Wei-Chen
    Hung, Je-Min
    Sheu, Shyh-Shyuan
    Li, Sih-Han
    Wu, Chih-I
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Chang, Meng-Fan
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (10) : 2790 - 2801
  • [3] A 55nm 1-to-8 bit Configurable 6T SRAM based Computing-in-Memory Unit-Macro for CNN-based AI Edge Processors
    Zhang, Zhixiao
    Chen, Jia-Jing
    Si, Xin
    Tu, Yung-Ning
    Su, Jian-Wei
    Huang, Wei-Hsing
    Wang, Jing-Hong
    Wei, Wei-Chen
    Chiu, Yen-Cheng
    Hong, Je-Min
    Sheu, Shyh-Shyuan
    Li, Sih-Han
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Chang, Meng-Fan
    [J]. 2019 IEEE ASIAN SOLID-STATE CIRCUITS CONFERENCE (A-SSCC), 2019, : 217 - 218
  • [4] Embedded 1-Mb ReRAM-Based Computing-in- Memory Macro with Multibit Input and Weight for CNN-Based AI Edge Processors
    Xue, Cheng-Xin
    Chang, Ting-Wei
    Chang, Tung-Cheng
    Kao, Hui-Yao
    Chiu, Yen-Cheng
    Lee, Chun-Ying
    King, Ya-Chin
    Lin, Chrong-Jung
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Chen, Wei-Hao
    Chang, Meng-Fan
    Liu, Je-Syu
    Li, Jia-Fang
    Lin, Wei-Yu
    Lin, Wei-En
    Wang, Jing-Hong
    Wei, Wei-Chen
    Huang, Tsung-Yuan
    [J]. Chang, Meng-Fan (mfchang@ee.nthu.edu.tw), 1600, Institute of Electrical and Electronics Engineers Inc., United States (55): : 203 - 215
  • [5] Embedded 1-Mb ReRAM-Based Computing-in- Memory Macro With Multibit Input and Weight for CNN-Based AI Edge Processors
    Xue, Cheng-Xin
    Chen, Wei-Hao
    Liu, Je-Syu
    Li, Jia-Fang
    Lin, Wei-Yu
    Lin, Wei-En
    Wang, Jing-Hong
    Wei, Wei-Chen
    Huang, Tsung-Yuan
    Chang, Ting-Wei
    Chang, Tung-Cheng
    Kao, Hui-Yao
    Chiu, Yen-Cheng
    Lee, Chun-Ying
    King, Ya-Chin
    Lin, Chrong-Jung
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Chang, Meng-Fan
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (01) : 203 - 215
  • [6] Low-Power 8T SRAM Compute-in-Memory Macro for Edge AI Processors
    Shin, Hye-Ju
    Jo, Sung-Hun
    [J]. Applied Sciences (Switzerland), 2024, 14 (23):
  • [7] A 1Mb Multibit ReRAM Computing-In-Memory Macro with 14.6ns Parallel MAC Computing Time for CNN-Based AI Edge Processors
    Xue, Cheng-Xin
    Chen, Wei-Hao
    Liu, Je-Syu
    Li, Jia-Fang
    Lin, Wei-Yu
    Lin, Wei-En
    Wang, Jing-Hong
    Wei, Wei-Chen
    Chang, Ting-Wei
    Chang, Tung-Cheng
    Huang, Tsung-Yuan
    Kao, Hui-Yao
    Wei, Shih-Ying
    Chiu, Yen-Cheng
    Lee, Chun-Ying
    Lo, Chung-Chuan
    King, Ya-Chin
    Lin, Chorng-Jung
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Chang, Meng-Fan
    [J]. 2019 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2019, 62 : 388 - U1909
  • [8] A 28nm 384kb 6T-SRAM Computation-in-Memory Macro with 8b Precision for AI Edge Chips
    Su, Jian-Wei
    Chou, Yen-Chi
    Liu, Ruhui
    Liu, Ta-Wei
    Lu, Pei-Jung
    Wu, Ping-Chun
    Chung, Yen-Lin
    Hung, Li-Yang
    Ren, Jin-Sheng
    Pan, Tianlong
    Li, Sih-Han
    Chang, Shih-Chieh
    Sheu, Shyh-Shyuan
    Lo, Wei-Chung
    Wu, Chih-, I
    Si, Xin
    Lo, Chung-Chuan
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Chang, Meng-Fan
    [J]. 2021 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2021, 64 : 250 - +
  • [9] Design Methodology towards High-Precision SRAM based Computation-in-Memory for AI Edge Devices
    Xiong, Tianzhu
    Zhou, Yongliang
    Kong, Yuyao
    Wang, Bo
    Guo, An
    Wang, Yufei
    Xue, Chen
    Hsu, Haiming
    Si, Xin
    Yang, Jun
    [J]. 18TH INTERNATIONAL SOC DESIGN CONFERENCE 2021 (ISOCC 2021), 2021, : 195 - 196
  • [10] A Dual-Split 6T SRAM-Based Computing-in-Memory Unit-Macro With Fully Parallel Product-Sum Operation for Binarized DNN Edge Processors
    Si, Xin
    Khwa, Win-San
    Chen, Jia-Jing
    Li, Jia-Fang
    Sun, Xiaoyu
    Liu, Rui
    Yu, Shimeng
    Yamauchi, Hiroyuki
    Li, Qiang
    Chang, Meng-Fan
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2019, 66 (11) : 4172 - 4185