Second order closure for stratified convection: bulk region and overshooting

被引:1
|
作者
Biferale, L. [1 ]
Mantovani, F.
Pivanti, M.
Pozzati, F.
Sbragaglia, M. [1 ]
Scagliarini, A.
Schifano, S. F.
Toschi, F.
Tripiccione, R.
机构
[1] Univ Rome, Dept Phys, Tor Vergata, Italy
关键词
TURBULENCE; MASS;
D O I
10.1088/1742-6596/318/4/042018
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The parameterization of small-scale turbulent fluctuations in convective systems and in the presence of strong stratification is important for many applied problems in oceanography, atmospheric science and planetology. In the presence of stratification, both bulk turbulent fluctuations and inversion regions, where temperature, density -or both-develop highly nonlinear mean profiles, are crucial. We present a second order closure able to reproduce simultaneously both bulk and boundary layer regions. We test it using high-resolution state-of-the- art 2D numerical simulations in a Rayleigh-Taylor convective and stratified belt for values of the Rayleigh number, up to Ra similar to 10(9). The system is confined by the existence of an adiabatic gradient. Our numerical simulations are performed using a thermal Lattice Boltzmann Method (Sbragaglia et al, 2009) able to reproduce the Navier-Stokes equations for momentum, density and internal energy (see also (Biferale et al, 2011b) for an extension to a case with forcing on internal energy). Validation of the method can be found in (Biferale et al, 2010; Scagliarini et al, 2010). Here we present numerical simulations up to 4096 x 10000 grid points obtained on the QPACE supercomputer (Goldrian et al, 2008).
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [31] Second-order methods for diffusion-convection equations
    Kohler, T
    Voss, D
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1999, 15 (10): : 689 - 699
  • [32] Second order mobility analysis of mechanisms using closure equations
    Fernandez de Bustos, Igor
    Aguirrebeitia, Josu
    Aviles, Rafael
    Ansola, Ruben
    MECCANICA, 2012, 47 (07) : 1695 - 1704
  • [33] Second order mobility analysis of mechanisms using closure equations
    Igor Fernández de Bustos
    Josu Aguirrebeitia
    Rafael Avilés
    Rubén Ansola
    Meccanica, 2012, 47 : 1695 - 1704
  • [34] Bulk modulus of second-order pressure derivative for nanomaterials
    Rohit Gupta
    Mohit Gupta
    Bulletin of Materials Science, 2021, 44
  • [35] Bulk modulus of second-order pressure derivative for nanomaterials
    Gupta, Rohit
    Gupta, Mohit
    BULLETIN OF MATERIALS SCIENCE, 2021, 44 (03)
  • [36] Bulk second-order optical nonlinearities in centrosymmetric materials
    Garcia, Jairo D.
    Gomez, Fabiola
    Velazquez, Victor
    Rodriguez, Boris A.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2022, 39 (10) : 2582 - 2588
  • [37] Surface and bulk contributions to the second-order nonlinearity of gold
    Wang, Fu Xiang
    Rodriguez, Francisco J.
    Kauranen, Martti
    Albers, Willem M.
    Ahorinta, Risto
    Sipe, John E.
    2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 2393 - +
  • [38] Second-order bulk modulus with thermal expansivity for nanomaterials
    Gupta, Rohit
    Gupta, Mohit
    BULLETIN OF MATERIALS SCIENCE, 2024, 47 (02)
  • [39] SECOND ORDER HOMOGENIZATION OF SUBWAVELENGTH STRATIFIED MEDIA INCLUDING FINITE SIZE EFFECT
    Marigo, Jean-Jacques
    Maurel, Agnes
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2017, 77 (02) : 721 - 743
  • [40] An Assessment of Second Moment Closure Modeling for Stratified Wakes Using Direct Numerical Simulations Ensembles
    Jain, Naman
    Huang, Xinyi L. D.
    Li, Jiaqi J. L.
    Yang, Xiang I. A.
    Kunz, Robert
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2023, 145 (09):