Microbial genotype-phenotype mapping by class association rule mining

被引:34
|
作者
Tamura, Makio [1 ]
D'haeseleer, Patrik [1 ]
机构
[1] Lawrence Livermore Natl Lab, Comp Applicat & Res Dept, Chem Mat Earth & Life Sci Dept, Microbial Syst Biol Grp, Livermore, CA 94550 USA
关键词
D O I
10.1093/bioinformatics/btn210
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Microbial phenotypes are typically due to the concerted action of multiple gene functions, yet the presence of each gene may have only a weak correlation with the observed phenotype. Hence, it may be more appropriate to examine co-occurrence between sets of genes and a phenotype (multiple-to-one) instead of pairwise relations between a single gene and the phenotype. Here, we propose an efficient class association rule mining algorithm, NETCAR, in order to extract sets of COGs (clusters of orthologous groups of proteins) associated with a phenotype from COG phylogenetic profiles and a phenotype profile. NETCAR takes into account the phylogenetic co-occurrence graph between COGs to restrict hypothesis space, and uses mutual information to evaluate the biconditional relation. Results: We examined the mining capability of pairwise and multiple-to-one association by using NETCAR to extract COGs relevant to six microbial phenotypes (aerobic, anaerobic, facultative, endospore, motility and Gram negative) from 11 969 unique COG profiles across 155 prokaryotic organisms. With the same level of false discovery rate, multiple-to-one association can extract about 10 times more relevant COGs than one-to-one association. We also reveal various topologies of association networks among COGs (modules) from extracted multiple-to-one correlation rules relevant with the six phenotypes; including a well-connected network for motility, a star-shaped network for aerobic and intermediate topologies for the other phenotypes. NETCAR outperforms a standard CAR mining algorithm, CARAPRIORI, while requiring several orders of magnitude less computational time for extracting 3-COG sets.
引用
收藏
页码:1523 / 1529
页数:7
相关论文
共 50 条
  • [21] Genotype-phenotype mapping in a post-GWAS world
    Nuzhdin, Sergey V.
    Friesen, Maren L.
    McIntyre, Lauren M.
    TRENDS IN GENETICS, 2012, 28 (09) : 421 - 426
  • [22] Genotype-phenotype association in a child with neurofibromatosis type 1
    Teixeira, Sara
    Vila-Real, Marta
    Santos, Fatima
    REVISTA DE NEUROLOGIA, 2020, 70 (02) : 73 - 74
  • [23] Genotype-phenotype Association In A Boy With Neurofibromatosis Type 1
    Teixeira, Sara
    Santos, Helena
    Real, Marta Vila
    Santos, Fatima
    EUROPEAN JOURNAL OF PEDIATRICS, 2019, 178 (11) : 1767 - 1768
  • [24] Pediatric Hypertrophic Cardiomyopathy: Exploring the Genotype-Phenotype Association
    Nguyen, Minh B.
    Mital, Seema
    Mertens, Luc
    Jeewa, Aamir
    Friedberg, Mark K.
    Aguet, Julien
    Adler, Arnon
    Lam, Christopher Z.
    Dragulescu, Andreea
    Rakowski, Harry
    Villemain, Olivier
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2022, 11 (05):
  • [25] The genotype-phenotype link
    Rasmuson, M
    HEREDITAS, 2002, 136 (01): : 1 - 6
  • [26] GENOTYPE-PHENOTYPE MAPPING: DEVELOPMENTAL BIOLOGY CONFRONTS THE TOOLKIT PARADOX
    Atallah, Joel
    Larsen, Ellen
    INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY, VOL 278, 2009, 278 : 119 - 148
  • [27] Genotype-phenotype correlations
    Bauce, Barbara
    Nava, Andrea
    ARRHYTHMOGENIC RV CARDIOMYOPATHY/ DYSPLASIA: RECENT ADVANCES, 2007, : 21 - +
  • [28] An Organoid Biobank of Neuroendocrine Neoplasms Enables Genotype-Phenotype Mapping
    Kawasaki, Kenta
    Toshimitsu, Kohta
    Matano, Mami
    Fujita, Masashi
    Fujii, Masayuki
    Togasaki, Kazuhiro
    Ebisudani, Toshiki
    Shimokawa, Mariko
    Takano, Ai
    Takahashi, Sirirat
    Ohta, Yuki
    Nanki, Kosaku
    Igarashi, Ryo
    Ishimaru, Kazuhiro
    Ishida, Hiroki
    Sukawa, Yasutaka
    Sugimoto, Shinya
    Saito, Yoshimasa
    Maejima, Kazuhiro
    Sasagawa, Shota
    Lee, Hwajin
    Kim, Hong-Gee
    Ha, Kyungsik
    Hamamoto, Junko
    Fukunaga, Koichi
    Maekawa, Aya
    Tanabe, Minoru
    Ishihara, Soichiro
    Hamamoto, Yasuo
    Yasuda, Hiroyuki
    Sekine, Shigeki
    Kudo, Atsushi
    Kitagawa, Yuko
    Kanai, Takanori
    Nakagawa, Hidewaki
    Sato, Toshiro
    CELL, 2020, 183 (05) : 1420 - +
  • [29] Integrating Evolutionary Game Theory into Mechanistic Genotype-Phenotype Mapping
    Zhu, Xuli
    Jiang, Libo
    Ye, Meixia
    Sun, Lidan
    Gragnoli, Claudia
    Wu, Rongling
    TRENDS IN GENETICS, 2016, 32 (05) : 256 - 268
  • [30] Shaping space: the possible and the attainable in RNA genotype-phenotype mapping
    Fontana, W
    Schuster, P
    JOURNAL OF THEORETICAL BIOLOGY, 1998, 194 (04) : 491 - 515