O-Operators on Lie ∞-algebras with respect to Lie ∞-actions

被引:4
|
作者
Caseiro, Raquel [1 ]
da Costa, Joana Nunes [1 ]
机构
[1] Univ Coimbra, Dept Math, CMUC, P-3001501 Coimbra, Portugal
关键词
Lie infinity-algebra; O-operator; Maurer Cartan element;
D O I
10.1080/00927872.2022.2025819
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define O-operators on a Lie infinity-algebra E with respect to an action of E on another Lie infinity-algebra and we characterize them as Maurer-Cartan elements of a certain Lie infinity-algebra obtained by Voronov's higher derived brackets construction. The Lie infinity-algebra that controls the deformation of O-operators with respect to a fixed action is determined.
引用
收藏
页码:3079 / 3101
页数:23
相关论文
共 50 条
  • [41] On realizations of 'nonlinear' Lie algebras by differential operators
    Beckers, J
    Brihaye, Y
    Debergh, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (15): : 2791 - 2803
  • [42] Nijenhuis operators on pre-Lie algebras
    Wang, Qi
    Sheng, Yunhe
    Bai, Chengming
    Liu, Jiefeng
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (07)
  • [43] Nijenhuis operators on Hom-Lie algebras
    Das, Apurba
    Sen, Sourav
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (03) : 1038 - 1054
  • [44] Homogeneous Averaging Operators on Semisimple Lie Algebras
    P. S. Kolesnikov
    Algebra and Logic, 2015, 53 : 510 - 511
  • [45] HOMOGENEOUS AVERAGING OPERATORS ON SEMISIMPLE LIE ALGEBRAS
    Kolesnikov, P. S.
    ALGEBRA AND LOGIC, 2015, 53 (06) : 510 - 511
  • [46] Nijenhuis Operators on n-Lie Algebras
    Liu, Jie-Feng
    Sheng, Yun-He
    Zhou, Yan-Qiu
    Bai, Cheng-Ming
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2016, 65 (06) : 659 - 670
  • [47] Lie Algebras of Heat Operators in a Nonholonomic Frame
    Buchstaber, V. M.
    Bunkova, E. Yu.
    MATHEMATICAL NOTES, 2020, 108 (1-2) : 15 - 28
  • [48] Lie Algebras of Heat Operators in a Nonholonomic Frame
    V. M. Buchstaber
    E. Yu. Bunkova
    Mathematical Notes, 2020, 108 : 15 - 28
  • [49] Lie algebras with differential operators of any weights
    Li, Yizheng
    Wang, Dingguo
    ELECTRONIC RESEARCH ARCHIVE, 2022, 31 (03): : 1195 - 1211
  • [50] BANACH-LIE ALGEBRAS OF COMPACT OPERATORS
    WOJTYNSKI, W
    STUDIA MATHEMATICA, 1977, 59 (03) : 264 - 273