Rolling bearing fault diagnosis using impulse feature enhancement and nonconvex regularization

被引:42
|
作者
Lin, Huibin [1 ]
Wu, Fangtan [1 ]
He, Guolin [1 ]
机构
[1] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510540, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature enhancement; Total variation; Nonconvex regularization; Rolling bearing; FEATURE-EXTRACTION; ELEMENT BEARINGS; DECOMPOSITION; ALGORITHM; MODEL; DICTIONARY; ENTROPY;
D O I
10.1016/j.ymssp.2020.106790
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In the past decade, sparse representation has received much attention in the field of fault diagnosis of rotating machinery. However, the effect of sparse representation largely depends on the signal-to-noise ratio (SNR) and constructed dictionary. To address these challenges, an impulsive feature enhancement method is proposed to improve the SNR of weak fault signal of rolling bearing firstly. Utilizing the structure characteristic of impulse response signal, that is, peaks and troughs appear alternately with the same intervals, a structure characteristic matrix is constructed for enhancing the weak impulse feature. Then, a Fused Moreau-enhanced Total Variation Denoising (FMTVD) penalty is developed to avoid the dictionary construction problem and induce the sparsity. The new cost function considers the sparsity of both the fault signal and its differential form, and its solution is derived according to the alternating direction method of multipliers (ADMM). By the two-step strategy, the weak fault features of rolling bearing that submerged in noise are extracted effectively. The performance of the presented method is verified using numerical simulation and practical rolling bearing data. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Reinforced graph regularization fault diagnosis network integrating multisensor rolling bearing data
    Qiu, Xiaorong
    Xu, Ye
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2024,
  • [32] A new rolling bearing fault diagnosis method based on GFT impulse component extraction
    Ou, Lu
    Yu, Dejie
    Yang, Hanjian
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 81 : 162 - 182
  • [33] Adaptive Periodic Impulse Extraction Method and Its Application in Rolling Bearing Fault Diagnosis
    Cheng, Jian
    Chen, Tong
    Pan, Haiyang
    Zheng, Jinde
    Tong, Jinyu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [34] Dual-impulse behavior analysis and quantitative diagnosis of the raceway fault of rolling bearing
    Ma, Renqiong
    Wang, Xiufeng
    Ni, Zexing
    Zeng, Chun
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 169
  • [35] A method for rolling bearing fault diagnosis based on sensitive feature selection and nonlinear feature fusion
    Liu, Peng
    Li, Hongru
    Ye, Peng
    PROCEEDINGS OF 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION (ICICTA 2015), 2015, : 30 - 35
  • [36] Rolling bearing fault diagnosis based on deep learning and chaotic feature fusion
    Jin J.-T.
    Xu Z.-F.
    Li C.
    Miao W.-P.
    Xiao J.-Q.
    Sun K.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2022, 39 (01): : 109 - 116
  • [37] Intelligent Fault Diagnosis of Rolling Bearing Based on the Depth Feature Fusion Network
    Feng, Zihan
    Ding, Hua
    Li, Ning
    Pu, Guoshu
    Gong, Wenbo
    IEEE ACCESS, 2024, 12 : 91896 - 91908
  • [38] Invariant Feature Purification Method for Domain Generalization of Rolling Bearing Fault Diagnosis
    Xie, Yining
    Yang, Guojun
    Chen, Hongzhan
    Zhao, Zhichao
    Leng, Xin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [39] A deep feature alignment adaptation network for rolling bearing intelligent fault diagnosis
    Liu, Shaowei
    Jiang, Hongkai
    Wang, Yanfeng
    Zhu, Ke
    Liu, Chaoqiang
    ADVANCED ENGINEERING INFORMATICS, 2022, 52
  • [40] Rolling bearing composite fault diagnosis method based on EEMD fusion feature
    Yixin Zhao
    Yao Fan
    Hu Li
    Xuejin Gao
    Journal of Mechanical Science and Technology, 2022, 36 : 4563 - 4570