Unified descriptor for enhanced critical heat flux during pool boiling of hemi-wicking surfaces

被引:19
|
作者
Song, Youngsup [1 ]
Zhang, Lenan [1 ]
Diaz-Marin, Carlos D. [1 ]
Cruz, Samuel S. [1 ]
Wang, Evelyn N. [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Critical heat flux; Roughness; Wettability; Capillary wicking; Phase change heat transfer; BUBBLE-GROWTH; HIGH-SPEED; EVAPORATION; WATER; PREDICTION; FLOW;
D O I
10.1016/j.ijheatmasstransfer.2021.122189
中图分类号
O414.1 [热力学];
学科分类号
摘要
Boiling heat transfer is dictated by interfacial phenomena at the three-phase contact line where vapor bubbles form on the surface. Structured surfaces have shown significant enhancement in critical heat flux (CHF) during pool boiling by tailoring interfacial phenomena. This CHF enhancement has been primarily explained by two structural effects: roughness, which extends the contact line length at the bubble base, and wickability, the ability to imbibe liquid through surface structures by capillary pumping. In this work, we show that CHF enhancement on structured surfaces cannot be described by roughness or wickability alone. This result was confirmed using systematically designed micropillar surfaces with controlled roughness and wickability. Further, we performed a scaling analysis and derived a unified descriptor, which represents the combined effects of thin film density and volumetric wicking rate. This unified descriptor shows a reasonable correlation with CHF values with our experiments and literature data. This work provides important insights in understanding the role of surface structures on CHF enhancement, thereby providing guidelines for the systematic design of surface structures for enhanced pool boiling heat transfer. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Capillary wicking effect of a Cr-sputtered superhydrophilic surface on enhancement of pool boiling critical heat flux
    Son, Hong Hyun
    Seo, Gwang Hyeok
    Jeong, Uiju
    Shin, Do Young
    Kim, Sung Joong
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 113 : 115 - 128
  • [22] Temperature-dependent wicking dynamics and its effects on critical heat flux on micropillar structures in pool boiling heat transfer
    Nam, Hyeon Taek
    Cho, Hyung Hee
    Lee, Seungro
    Lee, Donghwi
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2023, 146
  • [23] Critical heat flux of pool boiling on Si nanowire array-coated surfaces
    Lu, Ming-Chang
    Chen, Renkun
    Srinivasan, Vinod
    Carey, Van P.
    Majumdar, Arun
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (25-26) : 5359 - 5367
  • [24] The effects of nanoparticles on pool boiling and critical heat flux
    Srinivas, T.
    Varma, P. Adarsh
    Priya, Ch. Satya
    Prashanth, M.
    Mukesh, P.
    Nandan, B. Sai Sri
    Srinivas, G.
    INDIAN JOURNAL OF PHYSICS, 2024, : 1509 - 1518
  • [25] Critical heat flux in pool boiling on a vertical heater
    Monde, M
    Inoue, T
    Mitsutake, Y
    HEAT AND MASS TRANSFER, 1997, 32 (06) : 435 - 440
  • [26] A fractal model for critical heat flux in pool boiling
    Xiao, Boqi
    Yu, Boming
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2007, 46 (05) : 426 - 433
  • [27] Pool boiling critical heat flux in reduced gravity
    Shatto, DP
    Peterson, GP
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1999, 121 (04): : 865 - 873
  • [28] Assessment of nanofluids pool boiling critical heat flux
    Liang, Gangtao
    Yang, Han
    Wang, Jiajun
    Shen, Shengqiang
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 164
  • [29] Critical heat flux modeling in water pool boiling during power transients
    Deev, V. I.
    Oo, Htay Lwin
    Kharitonov, V. S.
    Kutsenko, K. V.
    Lavrukhln, A. A.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2007, 50 (19-20) : 3780 - 3787
  • [30] The effect of water absorption on critical heat flux enhancement during pool boiling
    Ahn, Ho Seon
    Park, Gunyeop
    Kim, Ji Min
    Kim, Joonwon
    Kim, Moo Hwan
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2012, 42 : 187 - 195