A survey on the linear ordering problem for weighted or unweighted tournaments

被引:37
|
作者
Charon, Irene [1 ]
Hudry, Olivier [1 ]
机构
[1] Ecole Natl Super Telecommun Bretagne, FR-75634 Paris 13, France
来源
关键词
aggregation of preferences; voting theory; social choice; linear ordering problem; Kemeny's problem; Slater's problem; median order; reversing set; feedback arc set; acyclic subgraph; optimal triangulation; graph theory; tournament solutions; complexity; combinatorial optimization; combinatorics;
D O I
10.1007/s10288-007-0036-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we survey some results, conjectures and open problems dealing with the combinatorial and algorithmic aspects of the linear ordering problem. This problem consists in finding a linear order which is at minimum distance from a (weighted or not) tournament. We show how it can be used to model an aggregation problem consisting of going from individual preferences defined on a set of candidates to a collective ranking of these candidates.
引用
收藏
页码:5 / 60
页数:56
相关论文
共 50 条
  • [41] Improved Approximations for Weighted and Unweighted Graph Problems
    Marc Demange
    Vangelis Paschos
    Theory of Computing Systems, 2005, 38 : 763 - 787
  • [42] Multirobot Forest Coverage for Weighted and Unweighted Terrain
    Zheng, Xiaoming
    Koenig, Sven
    Kempe, David
    Jain, Sonal
    IEEE TRANSACTIONS ON ROBOTICS, 2010, 26 (06) : 1018 - 1031
  • [43] On VLSI interconnect optimization and linear ordering problem
    Wimer, Shmuel
    Moiseev, Konstantin
    Kolodny, Avinoam
    OPTIMIZATION AND ENGINEERING, 2011, 12 (04) : 603 - 609
  • [44] Iterated Local search for the Linear Ordering Problem
    Castilla Valdez, Guadalupe
    Bastiani Medina, Shulamith S.
    INTERNATIONAL JOURNAL OF COMBINATORIAL OPTIMIZATION PROBLEMS AND INFORMATICS, 2012, 3 (01): : 12 - 20
  • [45] Understanding Instance Complexity in the Linear Ordering Problem
    Ceberio, Josu
    Hernando, Leticia
    Mendiburu, Alexander
    Lozano, Jose A.
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2013, 2013, 8206 : 479 - 486
  • [46] Exact Algorithms for the Quadratic Linear Ordering Problem
    Buchheim, Christoph
    Wiegele, Angelika
    Zheng, Lanbo
    INFORMS JOURNAL ON COMPUTING, 2010, 22 (01) : 168 - 177
  • [47] MODELING HIERARCHY - TRANSITIVITY AND THE LINEAR ORDERING PROBLEM
    ROBERTS, JM
    JOURNAL OF MATHEMATICAL SOCIOLOGY, 1990, 16 (01): : 77 - 87
  • [48] Descent with Mutations Applied to the Linear Ordering Problem
    Hudry, Olivier
    COMBINATORIAL OPTIMIZATION, ISCO 2018, 2018, 10856 : 253 - 264
  • [49] On the Complexity of Searching the Linear Ordering Problem Neighborhoods
    Correal, Benjamin
    Galinier, Philippe
    EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, EVOCOP 2015, 2015, 9026 : 150 - 159
  • [50] A Note on the Boltzmann Distribution and the Linear Ordering Problem
    Ceberio, Josu
    Mendiburu, Alexander
    Lozano, Jose A.
    ADVANCES IN ARTIFICIAL INTELLIGENCE, CAEPIA 2016, 2016, 9868 : 441 - 446